FLIGHT MANUAL

USAF SERIES F-4E AIRCRAFT

McDonnell Aircraft

NOM(A)63-0032-1
F42600-89-C-0024

Distribution authorized to US Government agencies and their contractors administrative or operational use 1 June 1987. Other requests for this document shall be referred to OD-ALC/MMDO, Hill AFB, Utah 84056-5009.

WARNING - This document contains technical data whose export is restricted by the ARMS Export Control Act (Title 22, U.S.C., sec 2771 et seq.) or the Export Administration Act of 1979, as amended, Title 50, U.S.C., apps. 2401 et seq. Violation of these export laws is subject to severe criminal penalties. Disseminate in accordance with the provisions of AFR 80-34.

HANDLING AND DESTRUCTION NOTICE - Comply with Distribution Statement and destroy by any method that will prevent disclosure of the contents or reconstruction of the document.

This manual supersedes TO 1F-4E-1S-102, SS-103, S-104, S-105 and S-106.

Commanders are responsible for bringing this publication to the attention of all affected personnel.

Published under authority of the Secretary of the Air Force.

15 OCTOBER 1984
CHANGE 10 - 1 APRIL 1990
LIST OF EFFECTIVE PAGES

Insert latest changed pages; dispose of superseded pages in accordance with applicable regulations.

Dates of issue for original and changed pages:

<table>
<thead>
<tr>
<th>Original</th>
<th>Change</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Oct 84</td>
<td>15 May 86</td>
<td>15 Jan 88</td>
</tr>
<tr>
<td>15 Apr 85</td>
<td>15 Oct 86</td>
<td>15 Sep 88</td>
</tr>
<tr>
<td>15 Sep 85</td>
<td>1 Jun 87</td>
<td>1 Feb 89</td>
</tr>
<tr>
<td>1 Nov 89</td>
<td>1 Apr 90</td>
<td>10</td>
</tr>
</tbody>
</table>

Total number of pages in this publication is 526 consisting of the following:

<table>
<thead>
<tr>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>10</td>
<td>1-23</td>
<td>0</td>
<td>1-51</td>
<td>6</td>
<td>2-13</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1-24</td>
<td>6</td>
<td>1-52</td>
<td>2</td>
<td>2-14</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>1-25</td>
<td>0</td>
<td>1-53</td>
<td>0</td>
<td>2-14A</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>1-26</td>
<td>0</td>
<td>1-54</td>
<td>10</td>
<td>2-14B blank</td>
<td>10</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>1-27</td>
<td>6</td>
<td>1-55</td>
<td>0</td>
<td>2-15</td>
<td>10</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>1-28</td>
<td>4</td>
<td>1-56</td>
<td>10</td>
<td>2-16</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>1-29</td>
<td>8</td>
<td>1-56A</td>
<td>10</td>
<td>2-17</td>
<td>10</td>
</tr>
<tr>
<td>IIIB blank</td>
<td>10</td>
<td>1-30</td>
<td>8</td>
<td>1-56B blank</td>
<td>10</td>
<td>2-18</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>1-30A</td>
<td>5</td>
<td>1-57</td>
<td>0</td>
<td>2-19</td>
<td>10</td>
</tr>
<tr>
<td>IV</td>
<td>6</td>
<td>1-30B</td>
<td>8</td>
<td>1-58</td>
<td>2</td>
<td>2-20</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td>1-31</td>
<td>4</td>
<td>1-59</td>
<td>0</td>
<td>2-21</td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>0</td>
<td>1-32</td>
<td>0</td>
<td>1-60</td>
<td>10</td>
<td>2-22</td>
<td>10</td>
</tr>
<tr>
<td>VII</td>
<td>0</td>
<td>1-33</td>
<td>8</td>
<td>1-61</td>
<td>0</td>
<td>2-23</td>
<td>8</td>
</tr>
<tr>
<td>VIII</td>
<td>0</td>
<td>1-34</td>
<td>8</td>
<td>1-62</td>
<td>10</td>
<td>2-24</td>
<td>2</td>
</tr>
<tr>
<td>1-1</td>
<td>8</td>
<td>1-34A</td>
<td>2</td>
<td>1-63</td>
<td>0</td>
<td>2-25</td>
<td>0</td>
</tr>
<tr>
<td>1-2</td>
<td>8</td>
<td>1-34B</td>
<td>2</td>
<td>1-64</td>
<td>10</td>
<td>2-26</td>
<td>1</td>
</tr>
<tr>
<td>1-3</td>
<td>8</td>
<td>1-35</td>
<td>10</td>
<td>1-65</td>
<td>6</td>
<td>2-27</td>
<td>6</td>
</tr>
<tr>
<td>1-4</td>
<td>0</td>
<td>1-36</td>
<td>0</td>
<td>1-66</td>
<td>10</td>
<td>2-28</td>
<td>0</td>
</tr>
<tr>
<td>1-5</td>
<td>0</td>
<td>1-36A</td>
<td>10</td>
<td>1-67</td>
<td>2</td>
<td>2-29</td>
<td>10</td>
</tr>
<tr>
<td>1-6</td>
<td>0</td>
<td>1-36B</td>
<td>10</td>
<td>1-68</td>
<td>0</td>
<td>2-30</td>
<td>10</td>
</tr>
<tr>
<td>1-7</td>
<td>0</td>
<td>1-37</td>
<td>10</td>
<td>2-1</td>
<td>10</td>
<td>2-31</td>
<td>1</td>
</tr>
<tr>
<td>1-8</td>
<td>2</td>
<td>1-38</td>
<td>0</td>
<td>2-2</td>
<td>10</td>
<td>2-32</td>
<td>8</td>
</tr>
<tr>
<td>1-9</td>
<td>6</td>
<td>1-39</td>
<td>2</td>
<td>2-4</td>
<td>10</td>
<td>2-32A</td>
<td>10</td>
</tr>
<tr>
<td>1-10</td>
<td>0</td>
<td>1-40</td>
<td>7</td>
<td>2-2B blank</td>
<td>8</td>
<td>2-32B blank</td>
<td>10</td>
</tr>
<tr>
<td>1-11</td>
<td>0</td>
<td>1-41</td>
<td>0</td>
<td>2-3</td>
<td>10</td>
<td>2-33</td>
<td>10</td>
</tr>
<tr>
<td>1-12</td>
<td>6</td>
<td>1-42</td>
<td>10</td>
<td>2-4</td>
<td>10</td>
<td>2-34</td>
<td>10</td>
</tr>
<tr>
<td>1-12A</td>
<td>6</td>
<td>1-42A</td>
<td>3</td>
<td>2-5</td>
<td>10</td>
<td>3-1</td>
<td>10</td>
</tr>
<tr>
<td>1-12B</td>
<td>6</td>
<td>1-42B blank</td>
<td>10</td>
<td>3-2</td>
<td>10</td>
<td>3-2A</td>
<td>10</td>
</tr>
<tr>
<td>1-13</td>
<td>5</td>
<td>1-43</td>
<td>10</td>
<td>3-3</td>
<td>8</td>
<td>3-4A</td>
<td>10</td>
</tr>
<tr>
<td>1-14</td>
<td>0</td>
<td>1-44</td>
<td>0</td>
<td>3-4</td>
<td>8</td>
<td>3-5A</td>
<td>0</td>
</tr>
<tr>
<td>1-15</td>
<td>5</td>
<td>1-45</td>
<td>2</td>
<td>3-5</td>
<td>8</td>
<td>3-6A</td>
<td>8</td>
</tr>
<tr>
<td>1-16</td>
<td>10</td>
<td>1-46</td>
<td>6</td>
<td>3-6</td>
<td>4</td>
<td>3-6A deleted</td>
<td>4</td>
</tr>
<tr>
<td>1-16A</td>
<td>8</td>
<td>1-47</td>
<td>10</td>
<td>3-8</td>
<td>8</td>
<td>3-6B blank</td>
<td>10</td>
</tr>
<tr>
<td>1-16B blank</td>
<td>9</td>
<td>1-48</td>
<td>0</td>
<td>3-8A</td>
<td>10</td>
<td>3-6B deleted</td>
<td>4</td>
</tr>
<tr>
<td>1-17</td>
<td>6</td>
<td>1-49</td>
<td>0</td>
<td>3-8A</td>
<td>10</td>
<td>3-7</td>
<td>6</td>
</tr>
<tr>
<td>1-18</td>
<td>9</td>
<td>1-50</td>
<td>8</td>
<td>3-8</td>
<td>8</td>
<td>3-8 blank</td>
<td>10</td>
</tr>
<tr>
<td>1-19</td>
<td>9</td>
<td>1-50A</td>
<td>10</td>
<td>3-8A</td>
<td>10</td>
<td>3-8A</td>
<td>10</td>
</tr>
<tr>
<td>1-20</td>
<td>6</td>
<td>1-50B</td>
<td>6</td>
<td>3-8A</td>
<td>10</td>
<td>3-8A</td>
<td>10</td>
</tr>
<tr>
<td>1-21</td>
<td>6</td>
<td>1-50C</td>
<td>6</td>
<td>3-8A</td>
<td>10</td>
<td>3-8A</td>
<td>10</td>
</tr>
<tr>
<td>1-22</td>
<td>1</td>
<td>1-50D blank</td>
<td>6</td>
<td>3-8A</td>
<td>10</td>
<td>3-8A</td>
<td>10</td>
</tr>
</tbody>
</table>

#Zero in this column indicates an original page.

A Change 10
<table>
<thead>
<tr>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-9</td>
<td>10</td>
<td>4-2A</td>
<td>10</td>
<td>5-27</td>
<td>5</td>
<td>A1-11</td>
<td>0</td>
</tr>
<tr>
<td>3-10</td>
<td>0</td>
<td>4-2B</td>
<td>10</td>
<td>5-28</td>
<td>8</td>
<td>A1-12</td>
<td>0</td>
</tr>
<tr>
<td>3-11</td>
<td>6</td>
<td>4-3</td>
<td>4</td>
<td>5-29</td>
<td>8</td>
<td>A1-13</td>
<td>0</td>
</tr>
<tr>
<td>3-12</td>
<td>8</td>
<td>4-4</td>
<td>4</td>
<td>5-30</td>
<td>10</td>
<td>A1-14</td>
<td>0</td>
</tr>
<tr>
<td>3-12A</td>
<td>10</td>
<td>4-5</td>
<td>0</td>
<td>5-31</td>
<td>8</td>
<td>A1-15</td>
<td>0</td>
</tr>
<tr>
<td>3-12B</td>
<td>10</td>
<td>4-6</td>
<td>4</td>
<td>5-32</td>
<td>8</td>
<td>A1-16</td>
<td>0</td>
</tr>
<tr>
<td>3-13</td>
<td>4</td>
<td>4-7</td>
<td>8</td>
<td>5-32A</td>
<td>8</td>
<td>A1-17</td>
<td>0</td>
</tr>
<tr>
<td>3-14</td>
<td>2</td>
<td>4-8</td>
<td>5</td>
<td>5-32B</td>
<td>8</td>
<td>A1-18</td>
<td>0</td>
</tr>
<tr>
<td>3-15</td>
<td>10</td>
<td>4-8A</td>
<td>7</td>
<td>5-32C</td>
<td>8</td>
<td>A1-19</td>
<td>0</td>
</tr>
<tr>
<td>3-16</td>
<td>4</td>
<td>4-8B</td>
<td>7</td>
<td>5-32D</td>
<td>10</td>
<td>A1-20</td>
<td>0</td>
</tr>
<tr>
<td>3-17</td>
<td>0</td>
<td>4-9</td>
<td>7</td>
<td>5-33</td>
<td>10</td>
<td>A2-1</td>
<td>0</td>
</tr>
<tr>
<td>3-18</td>
<td>0</td>
<td>4-10</td>
<td>0</td>
<td>5-34</td>
<td>10</td>
<td>A2-2</td>
<td>0</td>
</tr>
<tr>
<td>3-19</td>
<td>0</td>
<td>4-11</td>
<td>7</td>
<td>5-34A</td>
<td>10</td>
<td>A2-3</td>
<td>0</td>
</tr>
<tr>
<td>3-20</td>
<td>0</td>
<td>4-12</td>
<td>7</td>
<td>5-34B</td>
<td>10</td>
<td>A2-4</td>
<td>0</td>
</tr>
<tr>
<td>3-21</td>
<td>0</td>
<td>4-13</td>
<td>4</td>
<td>5-35</td>
<td>10</td>
<td>A2-5</td>
<td>0</td>
</tr>
<tr>
<td>3-22</td>
<td>4</td>
<td>4-14</td>
<td>10</td>
<td>5-36</td>
<td>1</td>
<td>A2-6</td>
<td>0</td>
</tr>
<tr>
<td>3-23</td>
<td>4</td>
<td>4-14A</td>
<td>10</td>
<td>6-1</td>
<td>9</td>
<td>A2-7</td>
<td>0</td>
</tr>
<tr>
<td>3-24</td>
<td>8</td>
<td>4-14B</td>
<td>10</td>
<td>6-2</td>
<td>0</td>
<td>A2-8</td>
<td>2</td>
</tr>
<tr>
<td>3-34A</td>
<td>10</td>
<td>4-15</td>
<td>10</td>
<td>6-3</td>
<td>0</td>
<td>A2-9</td>
<td>3</td>
</tr>
<tr>
<td>3-34B</td>
<td>10</td>
<td>4-16</td>
<td>0</td>
<td>6-4</td>
<td>0</td>
<td>A2-10</td>
<td>3</td>
</tr>
<tr>
<td>3-35</td>
<td>10</td>
<td>4-17</td>
<td>10</td>
<td>6-5</td>
<td>0</td>
<td>A2-11</td>
<td>0</td>
</tr>
<tr>
<td>3-36</td>
<td>10</td>
<td>4-18</td>
<td>10</td>
<td>6-6</td>
<td>8</td>
<td>A2-12</td>
<td>0</td>
</tr>
<tr>
<td>3-36A</td>
<td>10</td>
<td>4-19</td>
<td>10</td>
<td>6-7</td>
<td>4</td>
<td>A2-13</td>
<td>0</td>
</tr>
<tr>
<td>3-36B</td>
<td>10</td>
<td>4-20</td>
<td>0</td>
<td>6-8</td>
<td>4</td>
<td>A2-14</td>
<td>0</td>
</tr>
<tr>
<td>3-37</td>
<td>10</td>
<td>4-21</td>
<td>0</td>
<td>6-34A</td>
<td>10</td>
<td>A3-1</td>
<td>0</td>
</tr>
<tr>
<td>3-38</td>
<td>10</td>
<td>4-22</td>
<td>0</td>
<td>6-36B</td>
<td>10</td>
<td>A3-2</td>
<td>0</td>
</tr>
<tr>
<td>3-39</td>
<td>10</td>
<td>5-1</td>
<td>6</td>
<td>6-39</td>
<td>10</td>
<td>A3-3</td>
<td>0</td>
</tr>
<tr>
<td>3-40</td>
<td>10</td>
<td>5-2</td>
<td>2</td>
<td>6-10</td>
<td>9</td>
<td>A3-4</td>
<td>0</td>
</tr>
<tr>
<td>3-40A</td>
<td>8</td>
<td>5-3</td>
<td>2</td>
<td>6-11</td>
<td>8</td>
<td>A3-5</td>
<td>0</td>
</tr>
<tr>
<td>3-40B</td>
<td>8</td>
<td>5-4</td>
<td>5</td>
<td>6-12</td>
<td>9</td>
<td>A3-6</td>
<td>0</td>
</tr>
<tr>
<td>3-41</td>
<td>5</td>
<td>5-5</td>
<td>10</td>
<td>6-13</td>
<td>8</td>
<td>A3-7</td>
<td>0</td>
</tr>
<tr>
<td>3-42</td>
<td>4</td>
<td>5-6</td>
<td>10</td>
<td>6-14</td>
<td>8</td>
<td>A3-8</td>
<td>0</td>
</tr>
<tr>
<td>3-43</td>
<td>4</td>
<td>5-6A</td>
<td>6</td>
<td>6-15</td>
<td>8</td>
<td>A3-9</td>
<td>0</td>
</tr>
<tr>
<td>3-44</td>
<td>4</td>
<td>5-6B</td>
<td>6</td>
<td>6-16</td>
<td>8</td>
<td>A3-10</td>
<td>0</td>
</tr>
<tr>
<td>3-45</td>
<td>4</td>
<td>5-7</td>
<td>4</td>
<td>7-1</td>
<td>0</td>
<td>A3-11</td>
<td>0</td>
</tr>
<tr>
<td>3-46</td>
<td>4</td>
<td>5-8</td>
<td>1</td>
<td>7-2</td>
<td>5</td>
<td>A3-12</td>
<td>0</td>
</tr>
<tr>
<td>3-46A</td>
<td>10</td>
<td>5-9</td>
<td>0</td>
<td>7-3</td>
<td>4</td>
<td>A3-13</td>
<td>0</td>
</tr>
<tr>
<td>3-46B</td>
<td>10</td>
<td>5-10</td>
<td>2</td>
<td>7-4</td>
<td>4</td>
<td>A3-14</td>
<td>0</td>
</tr>
<tr>
<td>3-47</td>
<td>10</td>
<td>5-11</td>
<td>1</td>
<td>8-1</td>
<td>0</td>
<td>A3-15</td>
<td>0</td>
</tr>
<tr>
<td>3-48</td>
<td>10</td>
<td>5-12</td>
<td>1</td>
<td>8-2</td>
<td>0</td>
<td>A3-16</td>
<td>1</td>
</tr>
<tr>
<td>3-48A</td>
<td>10</td>
<td>5-13</td>
<td>10</td>
<td>9-1</td>
<td>0</td>
<td>A4-1</td>
<td>0</td>
</tr>
<tr>
<td>3-48B</td>
<td>10</td>
<td>5-14</td>
<td>4</td>
<td>9-2</td>
<td>0</td>
<td>A4-2</td>
<td>0</td>
</tr>
<tr>
<td>3-49</td>
<td>10</td>
<td>5-15</td>
<td>10</td>
<td>9-3</td>
<td>0</td>
<td>A4-3</td>
<td>0</td>
</tr>
<tr>
<td>3-49A</td>
<td>10</td>
<td>5-15A</td>
<td>10</td>
<td>9-4</td>
<td>0</td>
<td>A4-4</td>
<td>0</td>
</tr>
<tr>
<td>3-49B</td>
<td>10</td>
<td>5-16</td>
<td>10</td>
<td>9-5</td>
<td>0</td>
<td>A4-5</td>
<td>0</td>
</tr>
<tr>
<td>3-50</td>
<td>10</td>
<td>5-18A</td>
<td>8</td>
<td>9-6</td>
<td>0</td>
<td>A4-6</td>
<td>0</td>
</tr>
<tr>
<td>3-51</td>
<td>8</td>
<td>5-19</td>
<td>8</td>
<td>9-7</td>
<td>8</td>
<td>A4-7</td>
<td>1</td>
</tr>
<tr>
<td>3-52</td>
<td>10</td>
<td>5-19B</td>
<td>10</td>
<td>9-8</td>
<td>2</td>
<td>A4-8</td>
<td>0</td>
</tr>
<tr>
<td>3-53</td>
<td>10</td>
<td>5-19C</td>
<td>10</td>
<td>A1-1</td>
<td>0</td>
<td>A4-9</td>
<td>0</td>
</tr>
<tr>
<td>3-54</td>
<td>8</td>
<td>5-18</td>
<td>10</td>
<td>A1-2</td>
<td>0</td>
<td>A4-10</td>
<td>0</td>
</tr>
<tr>
<td>3-55</td>
<td>10</td>
<td>5-20</td>
<td>4</td>
<td>A1-3</td>
<td>0</td>
<td>A4-11</td>
<td>0</td>
</tr>
<tr>
<td>3-56</td>
<td>10</td>
<td>5-21</td>
<td>5</td>
<td>A1-4</td>
<td>0</td>
<td>A4-12</td>
<td>0</td>
</tr>
<tr>
<td>3-57</td>
<td>6</td>
<td>5-22</td>
<td>5</td>
<td>A1-5</td>
<td>10</td>
<td>A4-13</td>
<td>0</td>
</tr>
<tr>
<td>3-58</td>
<td>6</td>
<td>5-22A</td>
<td>8</td>
<td>A1-6</td>
<td>10</td>
<td>A4-14</td>
<td>0</td>
</tr>
<tr>
<td>3-59</td>
<td>8</td>
<td>5-22B</td>
<td>8</td>
<td>A1-7</td>
<td>10</td>
<td>A4-15</td>
<td>0</td>
</tr>
<tr>
<td>3-60</td>
<td>10</td>
<td>5-23</td>
<td>10</td>
<td>A1-8</td>
<td>8</td>
<td>A4-16</td>
<td>0</td>
</tr>
<tr>
<td>3-61</td>
<td>6</td>
<td>5-24</td>
<td>1</td>
<td>A1-9</td>
<td>8</td>
<td>A4-17</td>
<td>0</td>
</tr>
<tr>
<td>3-62</td>
<td>8</td>
<td>5-24A</td>
<td>4</td>
<td>A1-10</td>
<td>0</td>
<td>A4-18</td>
<td>0</td>
</tr>
<tr>
<td>3-63</td>
<td>10</td>
<td>5-24B</td>
<td>10</td>
<td>A1-11</td>
<td>0</td>
<td>A4-19</td>
<td>0</td>
</tr>
<tr>
<td>3-64</td>
<td>10</td>
<td>5-25</td>
<td>10</td>
<td>A1-12</td>
<td>0</td>
<td>A4-20</td>
<td>0</td>
</tr>
<tr>
<td>4-2</td>
<td>10</td>
<td>5-26</td>
<td>1</td>
<td>A1-13</td>
<td>0</td>
<td>A4-21</td>
<td>0</td>
</tr>
</tbody>
</table>

#Note: In this column indicates an original page.
<table>
<thead>
<tr>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
<th>Page No.</th>
<th>#Change No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4-23</td>
<td>3</td>
<td>A-9-37</td>
<td>0</td>
<td>F-22</td>
<td>5</td>
</tr>
<tr>
<td>A-4-24</td>
<td>3</td>
<td>A-9-38</td>
<td>0</td>
<td>F-24</td>
<td>5</td>
</tr>
<tr>
<td>A-4-25</td>
<td>3</td>
<td>A-9-39</td>
<td>0</td>
<td>F-25</td>
<td>5</td>
</tr>
<tr>
<td>A-4-26</td>
<td>3</td>
<td>A-9-40</td>
<td>0</td>
<td>F-26</td>
<td>5</td>
</tr>
<tr>
<td>A-4-27</td>
<td>3</td>
<td>A-9-41</td>
<td>0</td>
<td>F-27</td>
<td>5</td>
</tr>
<tr>
<td>A-4-28</td>
<td>3</td>
<td>A-9-42</td>
<td>0</td>
<td>F-28</td>
<td>5</td>
</tr>
<tr>
<td>A-4-29</td>
<td>3</td>
<td>A-9-43</td>
<td>0</td>
<td>F-29</td>
<td>5</td>
</tr>
<tr>
<td>A-4-30</td>
<td>3</td>
<td>A-9-44</td>
<td>0</td>
<td>F-30</td>
<td>5</td>
</tr>
<tr>
<td>A-5-1</td>
<td>3</td>
<td>A-9-45</td>
<td>0</td>
<td>F-31</td>
<td>10</td>
</tr>
<tr>
<td>A-5-2</td>
<td>3</td>
<td>A-9-46</td>
<td>0</td>
<td>F-32</td>
<td>10</td>
</tr>
<tr>
<td>A-5-3</td>
<td>3</td>
<td>A-9-47</td>
<td>0</td>
<td>Glossary 1</td>
<td>10</td>
</tr>
<tr>
<td>A-5-4</td>
<td>3</td>
<td>A-9-48</td>
<td>0</td>
<td>Glossary 2</td>
<td>10</td>
</tr>
<tr>
<td>A-5-5</td>
<td>3</td>
<td>A-9-49</td>
<td>0</td>
<td>Glossary 3</td>
<td>10</td>
</tr>
<tr>
<td>A-5-6</td>
<td>3</td>
<td>A-9-50</td>
<td>0</td>
<td>Glossary 4 Blank</td>
<td>10</td>
</tr>
<tr>
<td>A-5-7</td>
<td>3</td>
<td>A-9-51</td>
<td>0</td>
<td>Index 1</td>
<td>10</td>
</tr>
<tr>
<td>A-5-8</td>
<td>3</td>
<td>A-9-52</td>
<td>0</td>
<td>Index 2</td>
<td>10</td>
</tr>
<tr>
<td>A-6-1</td>
<td>3</td>
<td>A-9-53</td>
<td>0</td>
<td>Index 3</td>
<td>10</td>
</tr>
<tr>
<td>A-6-2</td>
<td>3</td>
<td>A-9-54</td>
<td>0</td>
<td>Index 4</td>
<td>10</td>
</tr>
<tr>
<td>A-7-1</td>
<td>3</td>
<td>A-9-55</td>
<td>0</td>
<td>Index 5</td>
<td>10</td>
</tr>
<tr>
<td>A-7-2</td>
<td>3</td>
<td>A-9-56</td>
<td>0</td>
<td>Index 6</td>
<td>10</td>
</tr>
</tbody>
</table>

#Zero in this column indicates an original page.

C Change 10
SAFETY/OPERATIONAL SUPPLEMENT SUMMARY

The following list contains: the previously cancelled or incorporated Safety/Operational Supplements; the outstanding Safety/Operational Supplements; if any; and the Safety/Operational Supplements incorporated in this issue. In addition, space is provided to list those Safety/Operational Supplements received since the latest issue.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>SUBJECT OR DISPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Safety/Operational Supplements thru TO 1F-4E-1S-101</td>
<td>Previously cancelled or incorporated.</td>
</tr>
<tr>
<td>TO 1F-4E-1S-102</td>
<td>Mode 4 audio after TO 1F-4-1495 incorporated in this issue.</td>
</tr>
<tr>
<td>TO 1F-4E-1SS-103</td>
<td>PC and utility pressure during single engine landing incorporated in this issue.</td>
</tr>
<tr>
<td>TO 1F-4E-1S-104</td>
<td>Checklist correction incorporated in this issue.</td>
</tr>
<tr>
<td>TO 1F-4E-1S-105 (Interim)</td>
<td></td>
</tr>
<tr>
<td>TO 1F-4E-1S-106 (Interim)</td>
<td></td>
</tr>
</tbody>
</table>
SOFTWARE NOTICE
OPERATIONAL FLIGHT PROGRAM (OFP) SOFTWARE IDENTIFICATION/CHANGE SUMMARY

The OFP number and the functional changes resulting from an OFP change are identified in the following table. This manual is changed or an Operational Supplement is issued to provide rapid distribution of the new function and remove the old function. OFP changes that do not affect the aircrew are not listed.

<table>
<thead>
<tr>
<th>OFP NUMBER</th>
<th>EQUIPMENT AFFECTED</th>
<th>IDENTIFICATION/CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFP 15.01</td>
<td>AN/ARN—101</td>
<td>OFP number is located in the power on interactive list, item 1.</td>
</tr>
<tr>
<td>*OFP V-48113</td>
<td>AN/ASQ—203</td>
<td>OFP number is located in the initialization display.</td>
</tr>
</tbody>
</table>

* Or OFP version authorized by the F—4 System Program Manager.
TECHNICAL ORDER SUMMARY
The Technical Order Summary lists only those technical orders which affect this manual.

<table>
<thead>
<tr>
<th>Technical Order</th>
<th>ECP</th>
<th>Title</th>
<th>Production Effectivity</th>
<th>Retrofit Effectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F-4E-1167</td>
<td>827S2P1</td>
<td>Improvement of fuel feed system & incorporation of self-sealing fuselage cells</td>
<td>68-495 and up</td>
<td></td>
</tr>
<tr>
<td>827S2</td>
<td>Part III</td>
<td>Adds provisions for mounting selective armor</td>
<td>68-452 and up</td>
<td></td>
</tr>
<tr>
<td>1F-4-1226</td>
<td>MOD</td>
<td>Installs data transfer module</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
<tr>
<td>3064</td>
<td></td>
<td>Adds HAVE QUICK capability</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1241</td>
<td></td>
<td>Adds full time voice receiver capability to aux receiver</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1252</td>
<td></td>
<td>Adds voice warning system</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1308</td>
<td></td>
<td>Adds provisions for 600 gallon high performance centerline tank and modifies jettison circuitry</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1320</td>
<td>MOD</td>
<td>Adds KY-58 Vinson secure voice UHF radio communication</td>
<td>none</td>
<td>66-284 & UP except F4E HARDWING configuration</td>
</tr>
<tr>
<td>3025</td>
<td></td>
<td>Installed digital fuel quantity indicator</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1414</td>
<td></td>
<td>Installs HAVE QUICK II System</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1448</td>
<td></td>
<td>Adds aural warning (fire—fire) to voice warning system</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4-1484</td>
<td></td>
<td>Modification of the F-4 aircraft fire/overheat detection system</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4E-591</td>
<td>7236R1</td>
<td>Adds AN/ALR-46 radar warning system</td>
<td>72-1498 and up</td>
<td>66-234 thru 72-1497</td>
</tr>
<tr>
<td>1F-4E-610</td>
<td>7087R2</td>
<td>Adds AGM-65/A (maverick) missile capability</td>
<td>71-237 and up</td>
<td>66-234 thru 69-7589 (selected aircraft)</td>
</tr>
<tr>
<td>1F-4E-611</td>
<td>7242R2</td>
<td>Installs Digital Scan Converter Group</td>
<td>74-00643 and up</td>
<td>66-234 thru 69-7589 (selected aircraft)</td>
</tr>
<tr>
<td>1F-4E-617</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F-4E-626</td>
<td>MOD</td>
<td>Installs digital modular avionics system (DMAS)</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
<tr>
<td>2917</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2974</td>
<td></td>
<td>Installs Pave Tack Pod</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
</tbody>
</table>

CONTINUED
TECHNICAL ORDER SUMMARY
The Technical Order Summary lists only those technical orders which affect this manual.

<table>
<thead>
<tr>
<th>Technical Order</th>
<th>ECP</th>
<th>Title</th>
<th>Production Effectivity</th>
<th>Retrofit Effectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F-4E-637</td>
<td>MOD</td>
<td>Adds sensor select panel and Pave Tack pod controls</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
<tr>
<td>1F-4E-639</td>
<td>2916</td>
<td>Adds airborne video tape recorder system</td>
<td>none</td>
<td>67-283 thru 69-7589 and 71-237 thru 74-1653 (selected aircraft)</td>
</tr>
<tr>
<td>or 1F-4-1138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F-4E-643</td>
<td>MOD</td>
<td>Installs control lens indicator</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
<tr>
<td>1F-4E-663</td>
<td>7177</td>
<td>DMAS OFF update</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
<tr>
<td></td>
<td>MOD</td>
<td>Adds target identification system electro-optical (TISEO)</td>
<td>71-237 and up</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>3107</td>
<td>Modifies aircraft for low smoke engine and high energy ignition</td>
<td></td>
<td>Selected aircraft</td>
</tr>
<tr>
<td></td>
<td>MOD</td>
<td>Adds GBU-15 and data link control panel</td>
<td>none</td>
<td>71-237 thru 74-1653</td>
</tr>
<tr>
<td></td>
<td>2999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F-4-1252</td>
<td>MOD</td>
<td>Install AN/APN-233(V) (CARA) in non DMAS/ NWDS F-4 aircraft</td>
<td>none</td>
<td>Selected aircraft.</td>
</tr>
<tr>
<td>1F-4-1495</td>
<td></td>
<td>Removal of KY-532B and replacement with KY-532C, F-4 aircraft</td>
<td>none</td>
<td>All</td>
</tr>
<tr>
<td>1F-4E-671</td>
<td></td>
<td>Installs Navigation and Weapon Delivery System AN/ASQ-203 (NWDS)</td>
<td>none</td>
<td>Selected aircraft.</td>
</tr>
</tbody>
</table>
STABILATOR AUXILIARY POWER UNIT (APU)

On aircraft 68-452 and up, an APU system provides backup hydraulic pressure for longitudinal control. An electrically driven hydraulic pump pressurizes the APU system to 1700 ±100 psi. The APU supplies pressure to the PC-1 side of the stabilator actuator and pitch stub augmentation if PC-1 pressure drops below 1000 psi. Fluid pressure is sufficient to supply stabilator demands of moderate flight maneuvers including landing. Flight speed is restricted below 600 knots/0.95 Mach with normal load factors from 0 to +4 G. Stick rate input is limited to 1 G per second. A pressure switch in the pump illuminates an APU light on the teletight panel, when the pump is operating. Stick movement in pitch can cause the APU light to flicker or remain ON for as long as six seconds. This is normal and should be disregarded. It does not indicate actual operation of the APU. An APU reject switch provides an option to reject the APU system should PC-1 pressure drop below 1000 psi (left engine shut down) with the PC-2 system operating normally. This switch has a test position for ground check of the system. Operation of the system is automatic, provided the reject switch is in NORMAL, as soon as PC-1 drops below 1000 psi. If the reject switch is in REJECT, operation is automatic as soon as PC-2 pressure drops below 1000 psi (provided PC-1 has previously failed or the left engine was shut down). Momentary drops of the PC system below 1000 psi will cause the APU system to be energized. A holding relay in the control system will keep it activated for 1 minute after the PC pressure has recovered.

Auxiliary Power Unit Reject Switch

The APU reject switch, on the outboard engine control panel, is a three position switch marked NORMAL, REJECT and TEST. The TEST position is spring loaded to REJECT and provides an operational check of the APU system with external power (engines shut down). The NORMAL position provides automatic operation of the APU system if PC-1 pressure drops below 1000 psi. The REJECT position is lever locked and provides an option to de-activate the APU after PC-1 fails, and PC-2 is still operating normally. Placing the switch to REJECT (after PC-1 failure) turns off the APU and completes a circuit to automatically re-activate the APU system if PC-2 should also fail. Loss of PC-2 with a good PC-1 system will not activate the APU.

APU Light

The APU light, on the teletight panel, illuminates anytime the APU is operating. A holding relay in the control circuit causes the light and APU to remain on for 1 minute, if momentary PC pressure drops occur. The APU light does not illuminate the MASTER CAUTION light.

If the APU CONT circuit breaker (F-5, No. 1 Panel) has been pulled after the system has been activated in flight, the light will remain on until the APU pump pressure bleeds off.

UTILITY SYSTEM

The utility hydraulic system is pressurized to 3000 ±250 psi by a hydraulic pump on each engine. To prevent the utility hydraulic pumps from resonating, check valves with different operating pressures are installed on the pump output lines. As a result, the right engine utility hydraulic pump will deliver 2775 ±226 psi at idle rpm, and the left engine utility hydraulic pump will deliver approximately 3000 ±250 psi at idle rpm. The utility hydraulic system supplies hydraulic pressure to:

- AFCS
- Aileron Power Control Cylinders
- Aileron Dampers
- Aileron-Rudder Interconnect
- Air Refueling Receptacle
- Anti-Skid
- Arresting Hook (retraction)
- Auxiliary Air Doors
- Slat Flaps
- Forward Missile Cavity Doors
- Fuel Transfer Pumps (hydraulic)
- Gun Drive
- Gun Gas Purge Door
- Landing Gear
- Lateral Control Servo (autopilot)
- Nose Gear Steering
- Pneumatic System Air Compressor
- Radar Antenna Drive
- Roll Stab Aug
- Rudder Damper
- Rudder–Feet System
- Rudder Power Control Cylinder
- Speed Brakes
- Spoiler Power Control Cylinders
- Variable Engine Bellmouth
- Variable Engine Intake Duct Ramps
- Wheel Brakes (normal and emergency accumulator)
- Yaw Stab Aug

HYDRAULIC PRESSURE INDICATORS

Two hydraulic pressure indicators are on the pedestal panel in the front cockpit. One is for the utility system and one is for the PC-1 and PC-2 systems. The power control systems indicator has two pointers, one labeled 1 for PC-1 and the other 2 for PC-2.

HYDRAULIC SYSTEMS INDICATOR LIGHTS

An amber CHK HYD GAGES indicator light is on the teletight panel. This single light is utilized by both the power control systems and the utility system to indicate loss of hydraulic system pressure and direct the pilot’s attention to the hydraulic pressure indicators. Illumination of the CHK HYD GAGES indicator light is controlled by the hydraulic systems pressure switches. The CHK HYD GAGES light illuminates when the pressure in any one system drops below 1500 ±100 psi and/or when one of the utility hydraulic pumps fail. In all cases a loss of system pressure will be noted on the applicable hydraulic pressure indicator, but, a failed utility pump may not register a significant pressure drop on the utility pressure indicator. An illuminated CHK HYD GAGES light with no noted pressure drop on any of the hydraulic pressure indicators usually signifies that the right utility hydraulic pump has failed. An illuminated CHK HYD GAGES light in conjunction with a utility hydraulic pressure drop of 200 psi signifies that the left utility pump has failed. The MASTER CAUTION light illuminates in conjunction with the CHK HYD GAGES indicator light. The MASTER CAUTION light may be
extinguished by depressing the reset button. The CHK HYD GAGES light remains illuminated until the pressure in the faulty system increases beyond 1750 psi. If a failure occurs in one of the remaining hydraulic systems while the CHK HYD GAGES light is already illuminated, the MASTER CAUTION light will not illuminate again and the pilot will not be alerted to the second failure.

NOTE

The MASTER CAUTION and CHK HYD GAGES lights may illuminate momentarily due to high system demand when the landing gear is lowered or with rapid control movement. If pressure recovers without delay, disregard this indication.

FLIGHT CONTROLS

The aircraft primary flight controls are the stabilator, rudder, ailerons, and spoilers. Refer to foldout illustrations for Flight Controls schematic. Artificial feel systems provide simulated aerodynamic forces to the control stick and rudder pedals. Secondary controls are slats flaps and speed brakes.

AILERON-SPOILER CONTROL SYSTEM

The control system uses PC-1 and utility hydraulic systems for the left aileron–spoiler, and PC-2 and utility hydraulic systems for the right aileron–spoiler. If one hydraulic system fails, the remaining system for that aileron–spoiler provides adequate control.

Lateral Control Feel and Trim System

When the trim switch is actuated, screwjack actuators extend and retract. The lateral controls are repositioned and the control stick follows the trim movements. Lateral control artificial feel is provided.

STABILATOR CONTROL SYSTEM

Longitudinal control is provided by a single-unit horizontal tail surface (stabilator). Hydraulic pressure to the stabilator is supplied by both PC-1 and PC-2 systems. If one PC system fails, the remaining system provides adequate control. An AFCS servo is integrated into the stabilator system. It positions the stabilator in the same manner as control stick inputs. As a result, when the autopilot signals for a pitch attitude change, the control stick will follow the movement. On aircraft 68–452 and up, an AFU supplies hydraulic pressure to the PC-1 side of the stabilator actuator if the PC-1 system fails.

Stabilator Control Feel and Trim System

Artificial feel is provided by a ram air bellows. When the aircraft is in trim, ram air force on the bellows is balanced by a bob weight. As airspeed increases or decreases, the pressure on the bellows changes, causing the bellows bob weight assembly to become off balance. The off balance condition is transmitted to the control sticks. Actuating the trim switch causes the stabilator trim actuator to move, balancing the force between the bellows and bob weight, eliminating force on the control sticks.

PNEUMATIC SYSTEM

The pneumatic system provides high pressure air for the normal and emergency operation of the canopies, and the emergency operation of the landing gear and slats flaps. Refer to foldout illustrations for Pneumatic System illustration.

In flight, the pneumatic system pressure may indicate below the minimum 2650 psi due to a compressor malfunction or the moisture separator freezing up. Normally, water collected in the moisture separator is discharged automatically at the same time the compressor reaches its cutoff limit of 3060 to 3200 psi. When system pressure gets below 2650 psi, the dump valve closes and allows the compressor to cut—in again. If the heat blanket fails, ice can form and clog the dump valve in the open position. This allows system pressure to bleed off slowly. Cycling the pneumatic system control circuit breaker may provide a power surge sufficient enough to close the dump valve solenoid allowing pneumatic system pressure to return to normal. However, the problem may repeat itself when the dump valve opens at compressor cutoff. If cycling the circuit breaker does not work, a descent to a lower altitude will be necessary to thaw ice in the moisture separator and allow the system to reset itself. If the circuit breaker is out and will not reset, the compressor will not run and pneumatic system pressure will continue to bleed off.

NOTE

Consideration should be given to lowering gear while utility hydraulics are available. If pneumatic pressure is below the green zone and utility hydraulics are lost, there may not be sufficient pressure in the emergency air bottles (due to the possibility of leaking check valves) to lower the gear.

PNEUMATIC PRESSURE INDICATOR

A pneumatic pressure indicator, located on the pedestal panel in the front cockpit shows only manifold pressure.
EMERGENCY ATTITUDE INDICATOR OPERATION

To initially erect the emergency attitude gyro, pull the cage knob out and hold until the indicator displays 0° in pitch and roll. Release the knob and within 3 minutes the gyro will be fully erected. Adjust the miniature airplane level with horizon bar. After the aircraft is in flight and in a wings level attitude, rotate the cage knob to adjust the miniature airplane on the indicator to the desired pitch position. The mechanical erecting mechanism will drive the indicator to the desired position at the rate of 3° per minute. Do not recage the gyro.

NOTE

Recage the gyro only when large errors are present. Large errors can be induced by more than 10° banks for such a period of time that an error of more than 10° is present which locks out the erecting mechanism. If recaging is necessary, attain a wings level attitude, recage the gyro and maintain the level attitude for 2 minutes after caging.

FLIGHT DIRECTOR GROUP

The flight director group provides an integrated display of the navigation situation of the airplane (figure 1-21). The flight director group consists of a flight director computer, the horizontal situation indicator (HSI), and a navigation function selector panel. The pilot selects various navigation information on the HSI and steering information on the ADI by positioning the bearing/distance selector knob and mode selector knob on the navigation function selector panel. On selected aircraft, navigation/steering information displayed by the flight director group is integrated with the DMAS or NWDS. Although the DMAS or NWDS is not a component of the flight director group, it supplies signals to the flight director computer and flight director instruments. DMAS or NWDS operation is discussed in this section only as it applies to flight director group operation. With the DMAS or NWDS, the flight director computer receives drift angle, relative bearing, and roll signals from the DMAS or NWDS to compute steering information displayed on the ADI. The DMAS or NWDS supplies range, relative bearing, course deviation, and course information to the HSI.

NWDS FLIGHT DIRECTOR STEERING COMMANDS

Roll Steering Error

The roll Steering Error is the difference between the commanded roll of the aircraft and the current roll of the aircraft. The Roll Steering Error is used to drive the Bank Steering Bar on the ADI and the Roll Tabs on the LCOSS and consequently limited to 30°. Roll Steering Error calculations provide steering cues to the pilot to achieve the required bank angle in order to obtain the desired course (i.e., Great Circle Course in Direct Track Steering Mode and Selected Course in the Course Select Steering Mode). For example: if the NWDS commands a bank angle of 60° and the pilot has only achieved a 45° bank, the NWDS continues to indicate an additional bank angle of 15° is required (ADI Bank Steering Bar indicating one half of a full scale deflection). Once the aircraft has achieved the required bank angle, NWDS commands indicate to the pilot to maintain the current bank by keeping the Bank Steering Bar centered. Once NWDS determines that the pilot must reduce the current bank angle to begin roll out on course, NWDS will indicate this by providing bank steering cues in the opposite direction indicating to the pilot to roll out. When the INU is not providing attitude information to the ACU the Roll Steering Error is equal to the Roll Steering Command.

Pitch Steering Error

The Pitch Steering Error is the difference between the commanded pitch of the aircraft and the current pitch of the aircraft. The Pitch Steering Error is used to drive the Pitch Steering Bar on the ADI and consequently limited to 30°. The Pitch steering error calculations provide steering cues to the pilot necessary to achieve the desired flight path angle (Approach—To—Landing and Pull Up Maneuver) or AGL altitude (Altitude Hold). For example, if the operator is performing an Approach—To—Landing and has deviated from the desired flight path (above desired flight path) NWDS provides pitch down steering. Once the pilot initiates the descent and begins reducing the flight path angle deviation, NWDS begins to reduce the pitch down command based upon the current deviation and rate of descent. If the pilot continues to descend towards the desired flight path and NWDS determines that the aircraft will descend below the desired flight path based upon the current rate of descent, NWDS begins indicating a pitch command on the Pitch Steering Bar, indicating to the pilot that the rate of descent must be reduced. Upon the operator capturing the desired flight path the Pitch Steering Bar becomes centered on the ADI, indicating to the pilot that the current aircraft situation is correct to maintain the desired flight path. When the INU is not providing attitude information to the ACU the Pitch Steering Error is equal to the Pitch Steering Command.
WARNING

Pitch steering indications are erratic and erroneous information may be displayed. Do not use the pitch steering bars during the approach.

NAVIGATION FUNCTION SELECTOR PANEL

The navigation function selector panel (figure 1-16) is on the front cockpit instrument panel. The panel contains a bearing/distance knob and a mode selector knob.

The bearing/distance selector knob controls the bearing pointer and range indicator displays on the HSI (figure 1-17). Knob positions are VOR/TAC, TAC, ADF/TAC, and NAV COMP. With VOR/TAC selected, magnetic and relative bearing to the VOR station and range to the tacan station are displayed on the HSI's bearing pointer and range indicator. With TAC selected, magnetic and relative bearing and range to the selected tacan station are displayed. With ADF/TAC selected, magnetic and relative bearing to the selected ADF station and range to the tacan station are displayed. With NAV COMP selected, magnetic and relative bearing and range are provided to the destination in the navigation computer.

The mode selector knob controls all the other navigation displays on the HSI (i.e. CDI, TO/TFROM indicator, heading set marker, etc.) as well as pitch and bank steering bars on the ADI (figures 1-18 thru 1-20). The mode selector knob operates independently and does not affect information displayed by the bearing pointer or range indicator. Any of the navigation modes selected by the pilot illuminates a mode of operation word message light on the HSI when the instrument panel lights control knob is ON. Intensity of the mode lights is also controlled by this knob. The mode words are: TAC (tacan), NAV (navigation computer), UHF (ADF), MAN (HDG), ILS (instrument landing system), and TGF (target). During radar offset bombing operations illumination of the TGF mode word indicates that the WSO has pressed the TGF insert button on the cursor control panel. The data link (DL) light does not come on since this mode is not available. The mode selector knob positions are: VOR/ILS, TAC, NAV COMP and HDG.

The flight director (FD) switch on the mode selector knob controls whether the pitch and bank steering bars on the ADI will function as directed by the mode selector knob or be driven out of view. For example, with the FD switch in the OFF (vertical) position, the bank steering bar normally used to direct a course interception in the TAC mode is out of view.

On DMAS/NWDS aircraft, the mode selector knob on the navigation function selector panel is modified to replace the NAV COMP mode with two new modes of operation, computer navigation (CMPTR NAV) and approach (CMPTR APR).
NAVIGATION FUNCTION SELECTOR PANEL

HORIZONTAL SITUATION INDICATOR

The HSI (figure 1-15) provides a horizontal or plan view of the aircraft with respect to the navigation situation. The navigation situations available for display on the HSI, as chosen by the navigation mode selector knob position, are listed here.

NOTE

On aircraft with NWDS, if VOR/ILS, VOR/TAC, or TAC/TAC cannot be entered during flight, check NWDS for an AIU fault. Clear the AIU fault before reattempting the other Nav mode.

- When the VOR/ILS mode is selected the heading marker is positioned by the heading set knob to the desired magnetic heading. The course arrow is positioned by the course set knob to the VOR radial or inbound front course localizer. The course deviation indicator displays the aircraft deviation from the selected VOR radial or inbound front course localizer.

- The tacan mode provides a display of a navigation situation with respect to the selected tacan. To provide a complete tacan display, the bearing/distance switch should be in the TAC position. The course arrow and the course selector window are set manually, using the course set knob, to the desired tacan course. The course deviation indicator and aircraft symbol display a plan view of the aircraft in relation to selected course. The maximum deflection of course deviation indicator is 10° (5° per dot). The heading set knob is used to manually set the heading marker to a desired tacan course, thus providing bank steering information on the ADI to command an asymptotic approach to the desired tacan course. The bank steering bar does not correct for drift. If the heading marker is not set to the desired course, bank steering information is not correct for course interception. The to-from indicator operates when the mode selector is in the tacan mode or the VOR/ILS mode when a VOR or tacan station is tuned and received. It indicates whether the course selected, if intercepted and flown, takes the aircraft to or from the selected station.
c. Without DMAS or NWDS, the NAV COMP mode displays (figure 1-20) the aircraft magnetic ground track on the course arrow and course selector window. The heading marker is electrically driven to indicate appropriate magnetic heading (command heading) to fly in order to arrive at the selected nav comp fix. The bank steering bar provides bank steering information to direct an asymptotic approach to the command heading. With DMAS, in the CMPTR NAV (computer approach) modes, the HSI receives signals from the DMAS by way of the signal data computer. In the CMPTR NAV mode, three HSI displays, direct track (DIR TRK), HSI course (HSI), or keyboard course (KYBD), can be selected by the pilot. With the course select switch in the DIR TRK position, the HSI course deviation indicator displays cross track velocity. Maximum deflection of the course deviation indicator is 100 feet per second (60 feet per dot). Bearing to the destination computed in the DMAS is displayed on the HSI course arrow and HSI course selector window. The heading marker displays the required magnetic heading to fly to the DMAS destination, and the compass card displays aircraft magnetic heading. With the course select switch in the HSI position, the course deviation indicator displays course deviation relative to the selected course. Full scale deflection of the course deviation indicator is 10,000 feet (5000 feet per dot). The course arrow and course selector window display the course selected by the course set knob. The heading marker displays the required heading to fly to the DMAS destination, and compass card indicates aircraft magnetic heading. With the course select switch in the KYBD position HSI displays are the same as those for the HSI position of the course select switch, except for the course arrow and course selector window, which display the keyboard course. The CMPTR APR mode enables the pilot to select a computer approach to a DMAS destination. CMPTR APR mode operation is displayed on the HSI and ADI. In CMPTR APR, the HSI course deviation indicator displays cross-track error in feet. Maximum deflection of the course deviation indicator is 2500 feet (1250 feet per dot). The course arrow and course selector window display the course set. The required heading to fly to the runway on the desired course is indicated by the heading marker and the compass card indicates aircraft magnetic heading. In CMPTR APR, the DMAS defaults to KYBD course whenever DIR TRK or KYBD is selected. If the keyboard course is invalid, the steering disengages.

d. With NWDS, in the CMPTR NAV (computer navigation) modes the HSI receives signals from the NWDS by way of the AIU for steering to the current NWDS destination. Bearing to the current NWDS destination is displayed by the HSI course arrow and in HSI course selector window. The heading marker displays the required magnetic heading to fly to the current NWDS destination, and the compass card displays the aircraft magnetic heading. The course deviation indicator displays position relative to the course to the current NWDS destination. Full scale deflection of the course deviation indicator is 10,000 feet (5000 feet per dot).

e. With NWDS, in the CMPTR APR (computer approach) mode the HSI and ADI display a computer approach to the current NWDS destination. The course deviation indicator displays cross track error in feet. Maximum deflection of the course deviation indicator is 2500 feet (1250 feet per dot). The course arrow and course selector window display the course set with the course set knob. The heading marker displays the desired course to fly to the runway and the compass card displays the aircraft magnetic heading.

f. When HDG is selected, the course arrow and course deviation indicator are slaved to the HUD line and display aircraft magnetic heading. The course selector window also displays magnetic heading. The heading marker may be manually set to the desired heading. This provides ADI bank steering bar information to command an asymptotic approach to the selected heading.

ATTITUDE DIRECTOR INDICATOR (ADI) (W/O NWDS)

Signals to the ADI (figure 1-15) are received from the primary or standby attitude reference system. Either system can be selected by placing the reference system selector switch, located on the pilot's main instrument panel, to the desired position. When the reference system is changed from PRIM to STBY or vice versa, the ADI may temporarily swing to some random point in azimuth before synchronizing back to the correct heading, and may be accompanied by some unusual gyrations of the attitude director indicator sphere. This phenomenon is a simultaneous large gyration about all three axes after which normal attitude reference is displayed. The pitch reference relationship of the attitude sphere to the miniature aircraft may be adjusted with the pitch trim knob. The turn indicator in the lower portion of the ADI receives its signal from a gyro housed within an AN/ADB-7 system component. However, the operation or malfunction of one system will not affect the other system. The bank steering bar provides command steering information to intercept selected headings, tracks, VOR radial, or navigation computer destinations. Bank steering commands from the heading marker and/or course arrow are transmitted through the flight director computer to the bank steering bar. The maximum bank angle commanded by the bank steering bar is 35°. If bank angles of more than 35° are desired heading/course
HORIZONTAL SITUATION INDICATOR
BEARING AND DISTANCE DISPLAYS

THE BRG/DIST SWITCH CONTROLS ONLY THE INDICATIONS DISPLAYED BY THE BEARING POINTER AND RANGE INDICATOR OF THE HSI.

BEARING DISTANCE SWITCH

VOR/TAC (VOR/TACAN)

THE BEARING POINTER INDICATES MAGNETIC BEARING TO THE VOR STATION SELECTED. THE RANGE INDICATOR INDICATES THE NAUTICAL MILES TO THE TACAN STATION SELECTED (TACAN IN T/R MODE). THE VOR LIGHT ILLUMINATES IF A VOR FREQUENCY IS SELECTED.

BEARING DISTANCE SWITCH

ADF/TAC (AUTOMATIC DIRECTION FINDER/TACAN)

THE BEARING POINTER INDICATES RELATIVE BEARING TO THE UHF STATION SELECTED ON THE COMMUNICATION CONTROL PANEL (EITHER COMM OR AUX ADF POSITION MUST BE SELECTED). THE RANGE INDICATOR WINDOW WILL DISPLAY SLANT RANGE TO THE TACAN STATION (TACAN IN THE T/R MODE). THE UHF LIGHT WILL BE ILLUMINATED.

BEARING DISTANCE SWITCH

NAV COMP (NAVIGATION COMPUTER)

THE BEARING POINTER INDICATES MAGNETIC BEARING TO THE DESTINATION SELECTED ON THE NAV COMPUTER. THE RANGE INDICATOR INDICATES THE NAUTICAL MILES TO THE DESTINATION SELECTED ON THE NAV COMPUTER (TARGET OR BASE). THE NAV LIGHT WILL BE ILLUMINATED.

BEARING DISTANCE SWITCH

TAC (TACAN)

THE BEARING POINTER INDICATES MAGNETIC BEARING TO THE SELECTED TACAN STATION. THE RANGE INDICATOR INDICATES THE SLANT RANGE NAUTICAL MILES TO THE TACAN STATION (FOR DISTANCE INDICATIONS, THE TACAN SELECTOR SWITCH MUST BE IN THE T/R POSITION). THE TAC LIGHT WILL BE ILLUMINATED.

Figure 1-17
WHEN ON THE COMMAND HEADING, THE HEADING MARKER WILL BE UNDER THE LURBER LINE. THE COURSE ARROW AND COURSE SELECTOR WINDOW DISPLAY MAGNETIC GROUND TRACK WITHIN NAV COMPUTER ACCURACY. THE DIFFERENCE BETWEEN THE AIRCRAFT HEADING AND THE BEARING POINTER IS WIND DRIFT.

WHEN ON THE COMMAND HEADING, THE BAR WILL BE CENTERED WITH THE WINGS LEVEL.

COURSE AND BEARING 090°

HEADING 085°

5° WIND DRIFT

TARGET OR BASE

BEARING POINTER 015°

HEADING MARKER 010°

AIRPLANE HEADING 280°

THE BANK STEERING BAR DEFLECTS RIGHT TO INDICATE THAT A RIGHT BANK (TURN) SHOULD BE MADE.

interception, the steering bar must be disregarded. During course interceptions, bank steering information is reliable when aircraft position is within a 60° arc either side of the selected tacan course, or within a 90° arc either side of the selected VOR course, and the heading set marker is set to the selected course. An OFF warning flag on the ADI is visible during the start cycle time delay; when the AN/AJB-7 gyro ac power fails; when the AN/AJB-7 pitch or roll signals fail; or while the fast erect switch is being activated. The attitude warning flag indicates only a failure in the AN/AJB-7 system regardless of the position of the reference system selector switch, and will not be in view if there is a failure or power loss within the INS.

WARNING

- Failure of certain components can result in erroneous or complete loss of pitch and bank presentations without a visible warning indication.

- If there is a confirmed or suspected ADI failure, switch to the standby attitude reference system and cross check ADI indications with the radar horizon line and emergency attitude indicator.

- The radar horizon line receives its input from the INS when the reference system selector switch is in the PRIM position and from the AN/AJB-7 when in the STBY position. If the INS fails, the ADI will indicate incorrect aircraft attitude, and the reference system selector switch should be placed to STBY immediately.

On aircraft 71-237 thru 74-1653 with PRIM selected, bank and pitch attitude signals are provided to the ADI sphere from the DAMS inertial measurement unit. The information displayed on the ADI by the bank and pitch steering bars and glide slope indicator is a function of the navigation function mode select and course select switches. With the mode select knob in CMPTR NAV, the pilot may obtain a different lateral command steering display on the bank steering bar for each position of the course select switch. The commanded bank steering indication is to the course selected by the HSI course set knob when the course select switch is in HSI, or to the course selected by the DAMS knob control when the course selector switch is in KYBD. With the course select switch in DIR TRK, the bank steering indication commands a course directly to the point set in the DAMS. When the mode select knob is in the CMPTR NAV position, the pitch steering bar is out of view for all course select switch positions, except when the BLIND weapon delivery mode is selected. In BLIND, pitch steering for weapon release at the break altitude is displayed on the ADI. In the automatic navigation mode of DAMS operation, navigation systems provide the ability to fly to sequential destinations (D and T) with command steering information in roll supplied to the ADI and AFCS (altitude hold). Command roll steering displayed with the bank steering bar is to the destination or weapon release point (during weapon delivery) set in the DAMS. Transition rates and roll attitudes from one leg of route to another are computed by the DAMS and displayed as roll commands on the bank steering bar, based on the sequential steer destinations set in the DAMS. Under DAMS control, bank steering command corrections for cross-track error are limited to a rate of change of 10° per second. The value of cross-track error used by the DAMS in the computation of roll steering commands is limited to provide a constant 57° angle of approach to the selected course. This cross-track error limit is continuously computed by the DAMS based on current aircraft ground speed. DAMS roll commands are limited in 45° in roll unless computer approach is selected, course capture is achieved, or the aircraft altitude exceeds 20,000 feet when the roll commands are limited to 30°.

NOTE

Attempts to maintain an even altitude of 20,000 feet may result in small fluctuations in system altitude, thus causing the DAMS roll commands to alternate between 30° and 45°.

With the delivery mode selector switch in BLIND, the glide slope indicator displays time to weapon release. At approximately 12 seconds before release the glide slope indicator drops into view. Each dot thereafter represents 5 seconds. At 10 seconds the indicator is at the lower limit (second dot down from level). At 5 seconds the indicator is at the first dot down from level. At release the indicator indicates level flight. At time-to-release values of greater than 12 seconds, the glide slope indicator is out of view. In the CMPTR APR mode, bank steering information is to a course identical to the predetermined runway heading. If the course select switch is in KYBD or DIR TRK, keyboard steering is provided to the course entered in the destination list. If no course has been entered in the destination list, steering disengages. If HSI is selected, the pilot dials in the desired course using the HSI course knob. Direct track steering is not provided in the CMPTR APR mode. Refer to Course Selector Switch. When the aircraft is less than 20 nautical miles from the runway, the glide slope indicator displays the airplane's position relative to the glide slope angle inserted with the DAMS knob control. Maximum deflection of the glide slope indicator represents 165 feet. At a distance of 20 nautical miles or less from the runway, the pitch steering bar comes into view and displays glide path command steering information. The pitch steering bar remains in view until the aircraft reaches the go-around altitude above AGL inserted in the DAMS.
In the CMPTR NAV and CMPTR APR modes, a fault detected in the DMAS navigational computer or signal data converter causes the course warning and glide slope warning flags to come into view. If data received from the ADC is invalid, the glide slope warning flag is in view. In the CMPTR APR mode, a fault in the DMAS navigational computer or signal data converter causes the course and glide slope warning flags to come into view and the pitch steering bar to drive full up. The course warning flag also comes into view in the CMPTR APR mode unless LRN INT or LRN INS mode is selected and Ioran is not locked on.

ATTITUDE DIRECTOR INDICATOR (ADI) (WITH NWDS)

Signals to the ADI (figure 1-15) are received from the NWDS source (primary) or AN/AJB-7 (standby) attitude reference system. When primary is selected, NWDS determines the validity of the input from the INU, and if invalid, supplies AN/AJB-7 attitude data if available. Either PRIM (Primary) or STBY (Standby) can be selected using the Reference System Selector switch on the ADI. When the reference system is changed from PRIM to STBY or vice versa, the ADI may temporarily swing to some random point in azimuth before synchronizing back to the correct heading, and may be accompanied by some unusual gyrations of the ADI sphere. This phenomenon is a simultaneous large gyration about all three axes after which normal attitude reference is displayed. The pitch reference relationship of the attitude sphere to the miniature aircraft may be adjusted with the pitch trim knob. The bank steering bar provides command steering information to intercept selected headings, tracks. TACAN or VOR radials, or navigation computer destinations. Bank steering commands from the heading marker and/or course arrow are transmitted through the flight director computer to the bank steering bar. The maximum bank angle commanded by the bank steering bar is 60°. If bank angles of more than 60° are desired during heading/course interceptions, the bank steering information must be disregarded. During course interceptions, bank steering information is reliable when aircraft position is within a 60° arc either side of the selected TACAN course, or within a 90° arc either side of the selected VOR course, and the heading set marker is set to the selected course. The pitch steering bar provides steering commands in the ILS mode after glide slope capture. An OFF flag on the ADI is visible when a failure in ac power or invalid NWDS data (PRIM) or AN/AJB-7 data (STBY) is detected.

WARNING

- Failure of certain components can result in erroneous or complete loss of pitch and bank presentations without a visible warning indication.
- If there is a confirmed or suspected ADI failure, compare attitude readings with the WSO, cross-check the emergency attitude indication, and switch to STBY (AN/AJB-7 attitude input).

With PRIM selected, pitch and bank attitude signals are provided to the ADI sphere from the primary NWDS attitude source (INU or AN/AJB-7). The INU is the primary attitude source. If the INU fails, with the Reference System Selector switch in PRIM, NWDS will automatically provide AN/AJB-7 pitch and roll inputs to the flight instruments if available. Selection of STBY or SYNC on the compass controller is required in order to receive valid ADI heading information.

The information displayed on the ADI by the pitch and bank steering bars and glide slope indicator is a function of the switch positions on the Navigation Function Selector Panel (NFSP) Bearing and Distance (BRG/DIST) and Mode switches, and NWDS operating mode (i.e., navigation or weapon delivery mode). NWDS operating modes will have no effect upon ADI steering displays unless the NFSP BRG/DIST and Mode switches are positioned to Computer Navigation (CMPTR NAV) or Computer Approach (CMPTR APR). With the NFSP Mode switch in CMPTR NAV position, the pilot may obtain different lateral steering commands via the bank steering bar for each NWDS steering mode, as selected by the WSO or programmed by the NWDS.

In the CMPTR NAV and CMPTR APR modes, certain faults detected in NWDS causes the course warning and glide slope warning flags to come into view. In the CMPTR APR mode, NWDS faults can cause the course and glide slope warning flags to come into view and the pitch steering bar to drive full up.
BEARING – DISTANCE – HEADING INDICATOR (BDHI)

The BDHI (figure 1–21) displays are controlled by positioning of the bearing/distance selector switch in the rear cockpit. In the TACAN/ADP/UHF (upper) position, the no. 1 pointer indicates UHF magnetic and relative bearing and the no. 2 pointer indicates tacan magnetic and relative bearing. If the tacan is not operating, both the no. 1 and no. 2 pointers indicate ADF bearing. In the VOR/TAC (middle) position, the no. 1 pointer indicates VOR magnetic and relative bearing and the no. 2 pointer indicates tacan magnetic and relative bearing. If the tacan is not operating, the no. 1 and no. 2 pointers both indicate bearing to the VOR station. The range indicator displays range to the selected tacan station. Without NWDS, in the NAV COMP (lower) position, the no. 1 pointer indicates magnetic and relative bearing to the selected navigation computer target coordinates and the no. 2 pointer indicates magnetic ground track. The range indicator displays range to the selected navigation computer target coordinates.

After TO 1F–4E–626, the BDHI range indicator and no. 1 and no. 2 pointers are driven by the DMAS when the BDHI mode selector switch is in the NAV COMP position. The range indicator displays range to the selected DMAS destination. The no. 1 pointer displays magnetic and relative bearing to the DMAS destination, and the no. 2 pointer displays the DMAS computer magnetic ground track. All other BDHI displays remain unchanged.

With NWDS, the NAV COMP (lower) position, the no. 1 and no. 2 pointers are driven by the NWDS. The range indicator displays range to the selected NWDS destination. The no. 1 pointer displays relative bearing to the NWDS destination, and the no. 2 pointer displays the NWDS ground track.

COURSE SELECT PANEL
(AIRCRAFT 71–237 THRU 74–1653)

The course selector panel is on the front cockpit instrument panel and contains a labs aid/wpn list selector knob, a course selector switch, a navigation pointer selector switch, an invalid labs lights, and a weapon in range light. For a description of the lights, refer to TO 1F–4E–34–1–1–2. The course select panel selects course data to be displayed on the ADI and HSI. Steering displays in the front cockpit are not affected by the course select panel unless the navigation mode selector knob is in CMPTR NAV or CMPTR APR mode.

Course Selector Switch

The course selector switch is a three-position, pull-to-release toggle switch with the positions of DIR TRK, HSI, and KYBD. The switch selects the course to be displayed on the HSI and used by the DMAS. With the course select switch in DIR TRK, a direct track course to the DMAS destination is displayed. In the HSI position, the course set with the HSI course set knob is displayed and used for steering computations. In the KYBD position, the course set with the DMAS keyer control for the selected destination is displayed on the HSI. If CMPTR NAV mode is selected and no course has been entered for the selected destination, the DMAS will default to DIR TRK.

When in CMPTR APR mode and KYBD or DIR TRK is selected, the DMAS attempts to use KYBD course steering. If the KYBD course is invalid because no course has been entered for the selected destination, the DMAS will disengage steering, the steering bar will be out of view until a course is inserted. When in CMPTR APR mode and HSI course is selected, the HSI inserted course will be used.

LABS Aid/Wpn List Selector Knob

This knob selects weapon delivery data. Refer to TO 1F–4E–34–1–1–2 for description of the knob functions.

Navigation Point Selector Switch

The navigation point selector switch is a three-position, pull-to-release toggle switch with positions of DEST A, DEST B, and KYBD. The KYBD position selects course data to the DMAS inserted destination and is the normal operating position of the navigation point selector switch. DEST A and DEST B switch positions are intended as emergency destinations if the keyer control fails. Regardless of the destination set in the DMAS, selecting of DEST A or DEST B provides a direct track, HSI, or DMAS keyboard selected course to the selected emergency destination, depending on the position of the course selector switch, if the destination has been inserted and validated in the destination interactive list.
BDHI (BEARING-DISTANCE-HEADING INDICATOR)

1. No. 1 Pointer
2. Compass Card
3. No. 2 Pointer
4. Lubber Index
5. Range Indicator

Figure 1-21
position with respect to the selected VOR radial, the
from indicator is activated, and if tacan is operating,
the range indicator displays slant range to the tacan
station. In the rear cockpit, if the navigation mode selector
switch is in VOR/TAC and both VOR and tacan are
operating, the BDHI displays VOR bearing on the No. 1
pointer, tacan bearing on the No. 2 pointer, and tacan
slant range on the range indicator. If tacan is not
operating, the VOR bearing is displayed on both BDHI
pointers and a flag covers the range indicator.

NOTE
VOR information is unreliable if the HSI bearing
pointer and the BDHI No. 1 pointer move to a
stationary 4 o'clock position, and/or if the ADI
course warning flag comes into view. Unreliable
VOR information is displayed under marginal
VOR signal conditions, such as maximum VOR
radio range.

To initiate the ILS System, rotate the NAV volume control
knob clockwise from OFF. Select the runway localizer
frequency on the VOR/ILS control panel. Set the HSI
course arrow and the course selector window to the ILS
final approach course. Place the navigation mode selector
knob to VOR/ILS and the ILS mode light on the HSI will
illuminate. When the aircraft receives a valid localizer
signal, the course warning flag on the ADI and the
localizer warning flag on the course indicator are driven
from view, the localizer identification tone is heard in the
headsets and the ADI bank steering bar deflects to
indicate in which direction to bank the aircraft and steer
to intercept the localizer beam. The bank steering bar
commands an asymptotic approach to the localizer
centerline. Operational requirements may require a faster
intercept in which case the bank steering bar should be
disregarded and the intercept completed with reference
to the CDI. The HSI course deviation indicator and the CI
localizer pointer deflect to indicate the aircraft position
with respect to the localizer beam. A strong crosswind may
cause the aircraft to track slightly off-center and parallel
to the course with the bank steering bar centered. Once
established on course, the pilot must provide drift
correction by reference to the CDI to stay on the course
centerline. As the aircraft continues inbound on the
localizer approaching the glide slope from below, the ADI
glide slope indicator and CI glide slope pointer deflect to
indicate the aircraft position with respect to the glide slope
and the ADI pitch steering bar pops into view indicating
in which direction to steer the aircraft to reach glide slope
center. Marker beacons associated with the approach will
cause the marker beacon lights to illuminate and an
identification tone to be heard as the aircraft passes

interrogation signals. These are known as Mode 1, Mode
2, and Mode 3/A, which are used for security
identification, personal identification and traffic
identification, respectively. Controls are provided for on
the IFF control panel for a fourth mode, Mode 4. The codes
for Modes 1 and 3/A can be set in the cockpit, but the code
for Mode 2 must be set on the ground. Mode 2 can be set
from code 0000 to code 7777.

IFF CONTROLS AND INDICATORS

The controls on the IFF control panel are shown in figure
1–25. There is also an IFF and an ALT ENCODER OUT
light on the telelight panel. Steady illumination of the IFF
light indicates that the Mode 4 code is zeroed (no code
inserted). The ALT ENCODER OUT light illuminates if
the altitude reporting signal from the altitude encoder
unit is unreliable.

Master Switch

The master switch is a five position rotary switch which
controls the operation of the entire system as indicated
below:

OFF Identification system deenergized.
STBY Full power supplied to the system,
LOW System operates with reduced
NORM System operates at full sensitivity.

IDENTIFICATION SYSTEM
CONTROL PANEL

![Identification System Control Panel Diagram](image)

Figure 1–25

1–55
EMER Allows the system to respond to interrogations in MODES 1, 2 and 3/A. The reply for Modes 1 and 2 is a special emergency signal of the codes selected on the applicable dials, while Mode 3/A replies are special emergency signals of code 7700.

Mode 1 Selector Switch

The three position Mode 1 selector switch controls the operation of Mode 1 as follows:

M-1 Self test position. (Inoperative)
ON Enables Mode 1 for operation.
OUT Disables Mode 1.

Mode 2 Selector Switch

The three position Mode 2 selector switch controls operation of Mode 2 as follows:

M-2 Self test position. TEST light illuminates if Mode 2 is operating properly.
ON Enables Mode 2 for operation.
OUT Disables Mode 2.

Mode 3/A Selector Switch

The three position Mode 3/A selector switch controls operation of Mode 3/A as follows:

M-3/A Self test position. TEST light illuminates if Mode 3/A is operating properly.
ON Enables Mode 3/A for operation.
OUT Disables Mode 3/A.

Mode C Selector Switch

The three position Mode C selector switch controls operation of Mode C as follows:

M-C Self test position. (Inoperative)
ON Enables Mode C operation.
OUT Disables Mode C

Mode 1 and Mode 3/A Code Selectors

The Mode 1 code selector is used to select Mode 1 codes for 00 to 73. The Mode 3/A code selector is used to select Mode 3/A codes from 0000 to 7777.

Mode 4 Selector Switch

The two position selector switch controls the operation of Mode 4 as follows:

ON Enables Mode 4 for operation.
OUT Inhibits Mode 4 reply. If Mode 4 code inserted, interrogation will cause the IFF warning light and the MASTER CAUTION light to come on momentarily.

Mode 4 Indication Switch

This switch has positions of AUDIO, OUT, and LIGHT. In AUDIO, an audio signal indicates Mode 4 interrogations are being received, and the Mode 4 REPLY light illuminates when replies are transmitted. In LIGHT, the Mode 4 REPLY light illuminates when Mode 4 replies are transmitted and audio is not present. In OUT, both light and audio indications are inoperative. The indication switch must be in the AUDIO or LIGHT position to test the press-to-test mode 4 reply indicator light.

NOTE

After TO 1F-4-1435, when the AUDIO-OUT-LIGHT switch is selected to AUDIO and a valid Mode 4 interrogation is received, a REPLY light will illuminate and no audio tone will be heard in the headset.
Mode 4 Function Switch

This switch has positions of ZERO, B, A, and HOLD. When the switch is placed to A, the systems transponder responds to Mode 4 interrogations from an interrogator using the same setting as set into the A position. In B, interrogations from an interrogator using the same code setting as that set into the B positions are answered. If the switch is in the wrong position for the code being interrogated (e.g., in A with B interrogation), the IFF warning light and MASTER CAUTION light will not come on. The code settings for the A and B positions are inserted before flight. Both code settings can be zeroed by placing the Mode 4 function switch to ZERO. The HOLD position is not used in flight but is used to retain the code setting if another flight is anticipated during the code period. Positioning the switch momentarily to HOLD after landing before placing the IFF master switch and radar power knob to OFF will retain the code with the power off. Illumination of the IFF warning light and MASTER CAUTION light can be caused by an internal component failure, a failure to respond to a valid interrogation, or a zeroized code.

Monitor-Radiation Test Switch

This switch has positions of RAD TEST, MON, and OUT. The switch is placed to the OUT position and is not used during flight.
positive pressure to test the face mask for leaks.

Oxygen Flow Indicators

An oxygen flow indicator in each cockpit alternately shows black and white with each breath indicating oxygen flow.

Oxygen Pressure Gages

An oxygen pressure gage indicates oxygen supply pressure in pounds per square inch. The gage is calibrated from 0 to 500 psi.

OXYGEN QUANTITY GAGE

An oxygen quantity gage in each cockpit has a range from 0 to 10 liters. Loss of electrical power to either indicator is indicated by appearance of a power off flag on the instrument face.

Oxygen Quantity Gage Test Button

The oxygen quantity gage test button is on the left vertical panel adjacent to the oxygen quantity gage in the front cockpit. The button is used to test operation of the front and rear cockpit gages along with operation of the oxygen low warning system. With the button pressed, both gage needles should rotate from the current oxygen quantity indication to an indication of zero. As the pointer in the front cockpit passes through the 1 liter indication, the OXYGEN LOW warning light on the front teletight panel should illuminate, and remain illuminated until the pointer again rotates above 1 liter. After releasing the button, both gage pointers return to an indication of current oxygen quantity and the OXYGEN LOW warning light goes out when the front indicator indicates above 1 liter.

OXYGEN SUPPLY

Breathing oxygen can be supplied to the face mask by the pressure demand regulator or the emergency oxygen storage bottle on the ejection seat. Under normal operation, oxygen is converted from a liquid state to a gaseous state. The gaseous oxygen is then routed to the
console mounted pressure demand regulator. The regulator will then supply oxygen upon demand at low altitudes, or under pressure at high altitudes. In the event of a failure of the main oxygen supply system, a limited amount of oxygen can be obtained from the emergency oxygen storage bottle. When the emergency oxygen manual release knob is pulled, either manually or automatically upon ejection, oxygen is released. The oxygen supply system has a normal and an emergency flow. See figure 1–27 for comparison of normal and emergency flow. Resistance to exhalation is noted when using oxygen in the emergency flow mode. This is caused by a back pressure build up of the oxygen being delivered to the face mask once inhalation has ceased. This condition can be alleviated by spilling oxygen out of the side of the mask.

SECTION 1

EJECTION SEAT

The ejection seat provides three ejection sequences from the aircraft in an emergency: (1) Dual ejection initiated from the front cockpit, (2) dual ejection initiated from the rear cockpit, and (3) single ejection of the rear crewmember initiated from the rear seat. Refer to Section III for ejection limitations.

EJECTION SEAT COMPONENTS

Refer to Ejection Seat foldout illustration.

Face Curtain Ejection Handle

The face curtain ejection handle is at the top of the seat projecting forward. A forward or downward pull of about 60 pounds releases the handle and about 10 inches of travel is required to initiate ejection. After canopy jettison, an additional pull of about 3 inches will fire the ejection gun. Sitting height should be adjusted to allow the face curtain to be pulled over the helmet without interference.

Lower Ejection Handle

The lower ejection handle is on the front of the seat between the crewmember's legs. An upward pull (45 pounds maximum) and about 1 inch of travel initiates ejection. After canopy jettison, an additional pull of about 5 inches will fire the ejection gun.

Lower Ejection Handle Guard

With the guard up, the lower ejection handle cannot be pulled. With the guard down, the handle is unlocked.

Canopy Interlock Block

The canopy interlock block and associated canopy interlock cable and interdictor link safety pin assembly prevent the face curtain or lower ejection handle from firing the seat until after canopy jettison. On the ground, with the canopy near fully open, the canopy cannot be jettisoned.

Command Selector Valve Handle

The command selector valve handle is above and left of the rear cockpit instrument panel (see Rear Cockpit Foldout Illustration). See figure 1–28. It selects single or dual ejection initiated by the rear crewmember. With the handle vertical (closed), single ejection is selected and the rear crewmember ejects himself. With the handle horizontal (open), both the pilot and rear crewmember will be ejected when either initiates ejection. Two types of valves are installed. For the valve labeled PLT EJECT PULL TWRN, to select dual ejection, pull the handle out without applying torque. The handle will rotate clockwise to horizontal. If released at an intermediate position, this handle will return to the vertical (single ejection) position. For the valve labeled PLT EJECT TURN, to select dual ejection, rotate the handle clockwise to horizontal. If released at an intermediate position, this handle may go to either the vertical or horizontal position.

Shoulder Harness Inertia Reel

The shoulder harness reel has an inertia lock which operates as a function of shoulder strap payout velocity. If this velocity is excessive, the reel locks and restrains the crewmembers. The inertia reel can be manually locked. A gas powered system retracts and locks the shoulder harness during ejection.

NOTE

Some aircrew members may have difficulty in reaching/activating some normal and/or emergency controls with the inertia reel in the locked position.

Shoulder Harness Release Handle

The shoulder harness release handle is on the left side of the ejection seat. The forward position locks the inertia reel and the rear position unlocks it. The unlocked position will not prevent automatic lock if strap payout velocity is excessive. Once automatically locked, the handle must be cycled forward and aft to unlock the reel.

Leg Restraints

The leg restraints hold the crewmember's legs against the front of the seat during ejection to prevent flailing. The leg restraints use two garters on each leg (figure 1–29). The garter with the double ring (calf garter) is worn above the flight boot. The garter with the single ring (thigh garter) is worn above the knee. Each garter should be buckled with the quick release on the inside of the leg. After the garter is adjusted, press and secure the loose end. Each leg restraint line is attached to the cockpit floor and passes through a snubber on the front of the seat, routed (without twist) through the calf garter outboard ring, through the inboard ring and then through the thigh garter ring. The lockpin on the end of the line is then inserted in the snubber box. A ring on the snubber box permits adjustment of slack in the restraint line by pulling on the ring and pulling the line forward through the snubber.

1-62 Change 10
SECTION II
NORMAL PROCEDURES

TABLE OF CONTENTS

Preparation for Flight ... 2-1
Preflight Check .. 2-1
Before Exterior Inspection (Front Cockpit) 2-2A
Exterior Inspection .. 2-3
Before Entering Front Cockpit 2-4
Front Cockpit Interior Check 2-6
Before Starting Engines 2-9
Starting Engines ... 2-9
Pneumatic Start ... 2-9
Engine Ground Operation 2-12
Before Taxing (Front Cockpit) 2-12
Before Entering Rear Cockpit 2-14
Before Electrical Power (Rear Cockpit) 2-14A
After Electrical Power (Rear Cockpit) 2-14A
Cockpit Interior Check 2-15
Before Taxing (Rear Cockpit) 2-17
Taxing .. 2-17
Before Takeoff ... 2-17
Takeoff .. 2-17
After Takeoff ... 2-17
Climb .. 2-19
Cruise .. 2-20
Descent/Before Landing 2-22
Landing .. 2-23
Go-Around ... 2-24
Touch-and-Go ... 2-27
After Landing ... 2-27
Engine Shutdown .. 2-29
Before Leaving Cockpit 2-30
Solo Flight Inspection (Rear Cockpit) 2-31
Cartridge Start .. 2-32
INS Alignment ... 2-32
KY—28 Operation or KY—58 Operation 2-32
with KY—28 Control Panel 2-32
KY—58 Operation .. 2-32
HAVE QUICK Operations 2-32
HAVE QUICK II Operation 2-32
Single—Engine Taxi ... 2-33A
Hot Refueling .. 2-34A
DMAS Pre—Scramble Alignment 2-35A
NWDS Pre—Scramble Alignment 2-35A
Scramble ... 2-35
Operations on Bomb—Damaged Runways 2-36

NOTE

The aircrew procedures through the Before Taxiing paragraph are separated into individual procedures for the pilot and weapon system officer. These separate procedures allow the individual crewmember to perform the checks without requiring him to read the checks performed by the other crewmember. The remaining procedures are combined and are coded for applicable crewmember action. Items coded (P—WSO) are applicable to both the pilot and weapon system officer. Items coded (WSO) are applicable to the weapon system officer only, and items not coded are applicable to the pilot only.

PREPARATION FOR FLIGHT

FLIGHT RESTRICTIONS

Refer to section V, Operating Limitations, for detailed aircraft and engine operating limitations.

FLIGHT PLANNING

Refer to Performance Data, appendix A.

TAKEOFF AND LANDING DATA CARD

If the takeoff distance exceeds one-half of the available runway length, the takeoff and landing data card in the Aircrew's Checklist should be completed.

WEIGHT AND BALANCE

For maximum gross weight limitations, refer to section V, Operating Limitations. For aircraft loading information, refer to Performance Data, appendix A, and to the handbook of Weight and Balance Data, TO 1-1B-40.

PREFLIGHT CHECK

CAUTION

Do not use the retractable boarding steps when the AN/AVQ—23A target designator pod is installed in the left forward missile well.

1. Check Form 781 for aircraft status and release.
2. Confirm ejector cartridges installed as required.
COCKPIT ENTRY

TYPICAL

THE CANOPIES ARE OPENED BY PRESSING THE BUTTON LOCATED BELOW EACH CANOPY

THE BOARDING STEPS ARE RELEASED BY DEPRESSING THE BUTTON INSIDE OF BOTTOM KICK STEP

Figure 2-1
67. APU system — CHECK (some aircraft, cannot be performed when a battery start is made)
 a. APU reject switch — TEST (APU light on)
 b. Move control stick very slightly fore and aft and check corresponding stabilator movement

[CAUTION]

Excessive movement of the control stick will cause failure of the PC-2 reservoir.

c. APU reject switch — NORMAL (APU light out after 1 minute)

68. Oxygen quantity gage — CHECK (cannot be performed when battery start is made)

Check that the oxygen quantity is sufficient for the intended mission, the OFF flag on the gage face is not visible, and the OXYGEN LOW light is extinguished. Press oxygen test button and check OXYGEN LOW light and MASTER CAUTION light illuminate at 1 liter. Notify rear crewmember, if applicable, that test is in progress.

69. Oxygen supply system — CHECK AND SET

Pressure — 65–120 psi

Regulator — CHECK
 a. Oxygen supply lever — FULLY ON
 On the CRU-73A regulator, it is possible for the oxygen supply lever to stop in an intermediate position between OFF and ON. Assure the lever is all the way on.
 b. Emergency lever — NORMAL
 c. Put mask on

Indicator — CHECK
 a. Diluter lever — 100%
 b. Emergency lever — EMERGENCY
 c. Oxygen flow — CHECK
 Breath normally for three cycles and check flow indicator operation. Hold breath; all flow should stop and the indicator should show no-flow (black). A white indicator indicates a leak that must be corrected before flight.

Connections — CHECK

Emergency oxygen — CHECKED
 a. Pressure — CHECKED
 b. Actuation knob and linkage — CHECKED

[WARNING]

For regulators other than the CRU-73/A, if the oxygen supply lever is OFF and the diluter lever is in NORMAL, there will be no restriction to breathing but the crewmember will be breathing cockpit air only and hypoxia will occur as cockpit altitudes that require oxygen are reached. It is therefore imperative to check for oxygen flow prior to takeoff. With the diluter lever in 100%, if the oxygen supply lever is OFF, neither cockpit air nor oxygen is available at the mask. For the CRU-73A regulator, with the oxygen supply lever OFF, neither cockpit air nor oxygen is available at the mask regardless of diluter lever position.

70. RWR system — CHECK (as required) THEN OFF (cannot be performed when battery start is made)

Refer to TO 1F-4E-34-1-1.

71. Eject light — CHECK
BEFORE STARTING ENGINES

1. Seat pins – CHECK REMOVED AND STOWED
2. CNI switch – ON
 Have ground personnel place the CNI switch in the left wheel well to the ON position.

 CAUTION

 When the CNI equipment is operating on external power without cooling air applied, it is limited to 10 minutes of accumulated operation in a 1 hour period in order to prevent heat damage to the equipment.

3. Fore and aft area – CLEAR
 Ensure the wheels are chocked and the engine intake, and exhaust areas, starter exhaust areas, and cockpit and canopy rail areas are clear of personnel and equipment. Refer to Danger Areas Illustration, this section.

4. Fire guard – POSTED
5. Throttles – OFF

 CAUTION

 Attempting a pneumatic start with throttles out of OFF will result in fuel puddling and the possibility of a hot start or fire.

STARTING ENGINES

The engines can be started by utilizing electrical power from an external power source or the aircraft battery, and by utilizing air pressure from a ground cart or a pyrotechnic cartridge. As a result, several starting combinations can be realized; i.e., external power source and ground cart, external power source and cartridge, battery and cartridge, and battery and ground cart. Refer to section VII, System Operation, for a description of engine starter operation. This procedure establishes the right engine as being started first. This procedure was adopted in order to ascertain that both utility hydraulic system pumps are operating properly. The right engine pump delivers 2775 + 225 psi at idle, while the left engine pump delivers 3000 ± 250 psi at idle. Because of this, the single needle utility hydraulic pressure indicator cannot be used to determine pump operation unless the right engine is started first. As the left engine is started, the utility hydraulic pressure will increase slightly indicating the left engine pump is operating. This procedure is based upon external power being available. During a start in which battery power is used, the oil pressure indicator, fuel flow indicator, and hydraulic pressure indicator will not be operative until airplane generated power is available. Cold weather procedures, section IX are to be used any time the outside temperatures are not extremely cold.

WARNING

Under no circumstances will the aircraft be flown with unfired cartridges in the starter.

CAUTION

During engine start, if rpm increases rapidly from 0 to 30%, immediately abort the start. Such an rpm increase is an indication of failure within the starter-to-engine drive train. Further rotation of the engine is impossible with such a failure. Continued fuel flow to the engine under this condition may result in engine fire.

NOTE

If irritating noxious exhaust fumes are present, increasing engine(s) to 70% rpm, may reduce fume levels.

PNEUMATIC START

CAUTION

Do not make a pneumatic start with an unfired cartridge installed in the starter. The cartridge may ignite and the resulting added torque may shear the starter output shaft.

1. External air source – CONNECT TO RIGHT STARTER (MA-1A starting unit or equivalent).
2. Engine master switches – ON
3. Engine – CRANK
 Signal ground crew to start external airflow and monitor the tachometer for the first indication of engine rotation.

CAUTION

If there is no indication of engine rpm within 15 seconds or no indication of oil or hydraulic pressure within 30 seconds after external air is applied discontinue the start and investigate.

4. At 10% rpm, ignition button – PRESS AND HOLD WHILE ADVANCING THROTTLE
 Depress the ignition button and simultaneously advance the throttle to a position halfway up the throttle quadrant, then snap the throttle to IDLE while monitoring fuel flow. If the fuel flow drops below 225 pph (400 pph, low smoke engine), the throttle rigging is out of limits and an entry shall be made in the Form 781. Do not accept the aircraft for flight where a snap deceleration is anticipated as flameout may occur. Rear crewmember will check for appropriate throttle movement during start. If throttles are not engaged, reconnect after engine start.
DANGER AREAS

MAXIMUM THRUST

WARNING
There is a significant increase in engine intake suction at power settings above idle. Insure personnel and equipment are clear of engine intake danger area before advancing power. The danger area extends four feet aft of duct lip.

MILITARY THRUST

WITH ENGINES OPERATING ABOVE IDLE RPM, OPERATIONAL PROTECTION SHOULD BE AVOIDED. HIGH ENGINE NOISE LEVELS AT IDLE RPM DO NOT EXPOSE UNPROTECTED AREA TO ENGINE NOISE FOR PERIODS GREATER THAN 5 MINUTES.

STARTER CARTRIDGE EXHAUST AREA

RADIATION BURN HAZARD MAY EXIST IN THIS AREA

FOR HOT BRAKES, AVOID TIRE AREA FOR 30 MINUTES AFTER AIRPLANE HAS STOPPED. IF NECESSARY, APPROACH FROM THE FRONT OR REAR ONLY.

IDLE THRUST

Figure 2-3
CAUTION

Do not attempt to start the engine before reaching 10% rpm. If the starting procedure is initiated at a lower rpm additional heat distress of the engine hot section is anticipated. Overtemperature of the turbine will generally occur during a low rpm start if starter air is inadvertently interrupted during the start cycle.

5. Release ignition button as soon as lightoff is indicated.

Lightoff is indicated by a rise in exhaust gas temperature followed by an increase in engine rpm. Engine lightoff is usually noted at approximately 13 to 18% rpm with a fuel flow of 225 to 750 pounds per hour (400 to 1,200 pounds per hour, low smoke engine). Higher fuel flow values are likely to result in hot starts. To prevent an overtemperature condition from occurring, the engines should be shut down prior to reaching the actual EGT limit. In the event of a hot or false start, and the throttle cannot be returned to OFF, the engine may be shutdown from any throttle setting by placing its engine master switch OFF (provided the other master switch is ON, if a battery start is made). This closes the fuel shutoff valve and deprives the engine of fuel. The engine will flameout in approximately 30 seconds from idle and approximately 2 seconds from military. After a wet or false start, allow 1 minute or longer for the combustion system to drain while continuing to turn the engine with pneumatic air. Direct the crew chief to inspect the engine nozzle for residual fuel before restarting the engine. If the engine does light off within 15 seconds after fuel flow is indicated, discontinue the start and investigate. If the engine does not continue to accelerate after light off, discontinue the start.

6. At 45% rpm, signal ground crew to stop external airflow.

7. Exhaust gas temperature indicator – 220° to 420°C (250° to 540°C, low smoke engine)

8. Fuel flow indicator – WITHIN LIMITS
Fuel flow should not exceed 750 pph at lightoff, and 800 to 1400 pph at idle. For low smoke engines, fuel flow should not exceed 1,200 pph at lightoff, and 800 to 1,500 pph at idle. Fuel consumed during starting is approximately 65 pounds per engine.

9. Idle rpm – 65 ±1%

10. Right boost pump indicator – 30 ±5 PSI (some aircraft)

11. Oil pressure indicator – 12 PSI MIN 50 PSI MAX

12. Hydraulic pressure indicators – WITHIN LIMITS
With the right engine started, the PC-2 hydraulic pressure indicator should read 3000 ±250 psi and the utility hydraulic pressure indicator should read 2775 ±225 psi. The check hydraulic gage indicator light remains illuminated until the left engine is started and all four hydraulic pumps are operating above 1750 psi. When the left engine is started, the utility hydraulic pressure indicator should read 3000 ±250 psi.

CAUTION

With only one engine operating, excessive rapid movement of the control stick may rupture the inoperative power control system reservoir.

13. Right generator switch – GEN ON
Ensure RH GEN OUT and BUSTIE OPEN lights go out. On aircraft without DMAS or NWDS, to avoid an electrical power interruption which could result in an INS No—Go indication, the pilot should ensure that INS is not in the align mode when the generator switches are placed to GEN ON.

WARNING

Check that auxiliary air doors and speed brakes (if out) are clear prior to cycling generator switches. Any interruption in electrical power will cause them to close violently, with possible injury to ground crew personnel.

NOTE

On NWDS aircraft, to avoid electrical power transients move the generator switch from EXT to ON with no pause in the OFF position.

14. APU light – CHECK ON (some aircraft)
The APU light will remain illuminated for approximately 1 minute after the left engine is started.

15. Spoiler actuator – CHECK
With the right engine operating, slowly deflect control stick approximately 1 inch to the left. Have ground crew or rear seat occupant verify that the spoiler does not fully deflect and that it returns to a flush position when the stick is returned to neutral. Abort if the spoiler check is not good.

16. Air refueling door and exterior air refueling lights – CHECK (if required).

17. Start the left engine per steps 1 through 12, substituting LEFT in all cases.

18. Left generator switch – GEN ON
Ensure that the LH GEN OUT light goes out. If the BUSTIE OPEN light does not go out within approximately 18 seconds, accelerate either
engine to approximately 70% rpm and cycle right generator. In low ambient temperatures, the BUS TIE OPEN light may not immediately go out after the left engine is started and the left generator light goes out. This may be due to failure of the generators to synchronize quickly because of cold oil in the left generator CSD.

19. Right generator switch - CYCLE
Cycle the right generator switch (OFF, then GEN ON), and check that the RH GEN OUT light illuminates.

WARNING

Do not cycle both generator switches at once. Any interruption in electrical power will cause the auxiliary air doors and the speed brakes (if out) to close violently, with possible injury to ground crew personnel.

20. BUS TIE OPEN light - OUT
Ensure that the BUS TIE OPEN light remains out when placing the right generator switch to OFF, and that it flashes momentarily when the switch is returned to the GEN ON position.

21. External air - DISCONNECT
22. External electrical power - DISCONNECT
23. Interior check - COMPLETE (if applicable)

ENGINE GROUND OPERATION

No engine warm-up is necessary; however, allow the engines to operate at idle until instrument readings stabilize. As soon as instrument readings stabilize, the throttle may be advanced to maximum thrust.

BEFORE TAXIING (FRONT COCKPIT)

NOTE

Since pressure vibrations in some types of shelters may cause instrument fluctuations and/or inaccurate readings, the Before Taxiing checks should be performed outside the shelter when practical.

1. Anti-G suit system - CHECK
 Press and release manual inflation button on anti-G suit control valve. Check for proper suit inflation and deflation.

2. Communication and navigation equipment - ON AND CHECK

3. IFF = STANDBY
 Prior to this point the IFF should remain OFF as any interruption of power would cause loss of the mode 4 code.

4. Radar altimeter - ON
 Before TO 1F-4-1252, check that OFF flag moves out of view.

5. Altimeter and SPC = SET AND CHECK
 a. Set current altimeter setting on the barometric scale.
 b. Altimeter pointer should indicate the field elevation within ±75 feet.
 c. Place the SPC switch to RESET CORR. The STATIC CORR OFF light should go out and remain out. Disregard initial momentary engagement oscillations. Altimeter reading after oscillations stop should not exceed ±25 feet from original reading. Continued altimeter oscillations of any magnitude are unacceptable.

NOTE

Failure of the STATIC CORR OFF light to extinguish after SPC engagement could be an indication of CADC failure and the mission should be aborted.

d. With the static correction on (SPC engaged), the altimeter should indicate the field elevation within ±90 feet.

f. The difference between the front and rear cockpit altimeters should not exceed 100 feet.

f. Place the altimeter switch to RESET. Altimeter should not vary more than ±75 feet and the red STBY flag should not be in view.

h. The altimeter should indicate the field elevation within ±75 feet.

h. With both altimeters in RESET, the difference between the front and rear cockpit should not exceed 75 feet.

NOTE

If the altimeter is not within tolerance in RESET, the aircraft may be flown in the STBY mode provided that, in the STBY mode, the altimeter checks within ±75 feet of field elevation. The ±75 feet of field elevation is an operational restriction and does not necessarily reflect instrument tolerances.

6. Speed brakes - CYCLE
 Open and close the speed brakes to check proper operation. Have ground crew check that speed brakes extend simultaneously. Obtain a signal from the ground crew that the speed brakes are fully closed and observe that the SPEED BRAKE OUT indicator light is extinguished.

7. Slats flaps - CHECK
 Place slats flap switch to OUT; observe that slats indicate OUT and flaps indicate DN. The flaps may not extend or retract together without airloads on them. This condition is normal and the flaps should extend and retract together when airborne. Place slats override switch to IN; observe slats retract. Place slats override switch to NORM; observe slats extend. If slats indicate barberpole or indication does not match switch position, leave switch as set and abort the mission. If an audible (noticeable in head phones) chattering associated with slats flaps and utility hydraulic pressure indicators fluctuating in
unison occurs, cycle the slats flaps. If chatter persists, abort the mission. If cycling stops chatter, continue mission and make an appropriate entry in AF Form 781.

CAUTION

Continued or prolonged operation with flap or slat chatter will damage actuator(s) and mechanisms.

8. Flight controls – CHECK (slats flaps OUT AND DOWN)
 Ground crew should confirm all flight control positions. The MASTER CAUTION and CHK HYD GAGES lights may illuminate momentarily during this check. If pressure recovers without delay, disregard this indication.
 a. Pitch trim – 1 TO 8 UNITS NOSE DOWN

b. Control stick – PULL FULL AFT AND RELEASE
 Movement forward should be smooth and free of any restriction. The stick may not return to the full forward position. The stick should move forward at least to the ½ travel position and further movement toward the stop should require no more than one pound push force. If trim is set full nose down, several slight bumps may be felt during this check. If these bumps do not recur when stabilator is properly trimmed, disregard this indication.
 c. Rudder – CHECK FULL TRAVEL LEFT AND RIGHT
d. Ailerons/ARI — CHECK
Move control stick full left. Observe left spoiler up, right aileron down and rudder slightly left. Engage yaw stab aug. Observe rudder move further left. Depress emergency quick release lever. Observe rudder move toward neutral. Release emergency quick release lever, neutralize stick and disengage yaw stab aug. Repeat check substituting right for left.

9. Slats flaps — NORM
10. ARI disengage — CHECK
Move stick full right and left. Observe no rudder movement.

11. Stab aug switch — ENGAGE AND CHECK
Engage each axis of stab aug individually. Observe no movement of any control surface (1/4 inch allowable). If an aileron/spoiler deflects during roll stab aug engagement, it may take up to 4 seconds to reseat after roll stab aug is disengaged. Allow enough time for the aileron/spoiler to reseat before reengaging roll stab aug to check the other aileron/spoiler.

12. Reference system selector — PRIM (ensures INS is in NAV) (W/O DMAS or NWDS)

13. Compass mode control knob — SYNC (if necessary)
Allow 10 seconds for automatic synchronization before manually synchronizing system.

NOTE
Coordinate with the WSO to ensure the NWDS INU alignment is complete. Movement of the aircraft could cause the INU to automatically exit alignment causing the INU to enter ATT mode or degraded NAV mode.

14. Automatic flight control system — CHECK (if required)

a. AFCS — ENGAGE
Grasp stick below stick grip. Position stick near neutral. Hold switch to ENGAGE until AFCS engages. Check that the stick does not immediately drive forward or aft nor any control surface jump more than 1/2 inch. If the wings are not level, the ailerons will drive due to normal action of the heading hold function. Abruptly move the stick forward or aft and check that AFCS disengages. Reengage AFCS switch.

b. Altitude hold — ENGAGE
Observe no control surface jump or rapid stick motion.

c. AFCS — DISENGAGE
Depress and hold the front cockpit emergency quick release lever. Observe PITCH AUG OFF, AUTOPILOT DISENGAGE and MASTER CAUTION lights illuminate. Release lever. Observe PITCH AUG OFF light goes out.

d. AFCS — ENGAGE

15. Stab aug switches — DISENGAGE

16. Trim — CHECK AND SET 1 TO 3 UNITS NOSE DOWN
With 3 units nose down trim, expect a nose heavy tendency on the takeoff roll which quickly approaches a trimmed condition as the aircraft lifts off and the gear and flaps are retracted. With 1 unit nose down trim, a very marked nose up trim occurs after approximately 250 knots requiring a large nose down trim change at a very low altitude. Check operation of the trim indicator. Receive a signal from the ground crew/rear cockpit occupant that the ailerons and rudder are set at neutral.

17. Slats flaps — OUT AND DOWN (ground crew visually check)

18. Optical sight — STBY, OR CAGED

19. Pneumatic pressure — CHECK

20. IFF — CHECK

21. Radar altimeter — CHECK
Before TO 1F-4-1252;
Allow 5 minutes warm-up after radar altimeter turned on.

a. Function control switch — PRESS
Check that pointer moves to 35±15 feet and stabilizes.

b. Low altitude warning light — CHECK
With function control switch pressed, move reference marker above and below pointer. Warning light must come on with ±5 feet of indicated altitude.

16. Trim — CHECK AND SET 1 TO 3 UNITS NOSE DOWN

22. Wheel chocks and ground interphone cord — REMOVED

NOTE
Do not move aircraft with INS in ALIGN mode.

Change 10 2-13
BEFORE ENTERING REAR COCKPIT

1. Canopy condition – CHECK
 Check for cracks in the canopy and windshield plexiglass. Check condition of the canopy pressure seals. Ensure canopy knife present and secure.

2. Canopy safety strut – REMOVED
 Ensure normal canopy control handle is in open position if safety strut requires removal.

3. Canopy actuator – SHEAR PIN INTACT

4. Lower ejection handle guard – UP

WARNING

No object of any kind should ever be placed on the top of the ejection seat.

5. Command selector valve – VERTICAL

6. Ejection seat – CHECK
 a. Face curtain and seat mounted initiator safety pins – INSTALLED; ALL OTHER SAFETY PINS REMOVED

CAUTION

Exercise caution regarding hand movements in the vicinity of the bulkhead mounted canopy initiator linkages. Also, do not store flight equipment or personal items in this area. Failure to comply could result in inadvertent jettisoning of the canopy.

b. Canopy interlock cable and interdictor link safety pin assembly – INSTALLED CORRECTLY AND ATTACHED TO CANOPY

WARNING

If the canopy interlock cable and interdictor link safety pin assembly is pulled or bypassed and the seat pulled, the seat will fire immediately.

c. Banana links – ENGAGED IN MAIN SEAR

d. Drogue chute retaining flaps – FORWARD FLAP FOLDED OVER OTHER FLAPS

e. Seat mounted initiator – LINKAGE CONNECTED

f. Scissors – LOCKED TO SHACKLE AND TIED DOWN, SCISSORS GUARD NOT BROKEN

WARNING

If the scissors shackle safe-tie thread passes through the wire loop, the drogue chute may not deploy.

g. Drogue chute withdrawal line – ROUTED OVER ALL OTHER LINES

h. Top latch mechanism plunger and locking indicator – FLUSH WITH HOUSING

WARNING

If the plunger and locking indicator are not flush with the housing, the seat is not locked in position and an inadvertent ejection can occur.

i. Personnel parachute withdrawal line – QUICK DISCONNECT IS CONNECTED AND RUNS THROUGH GUILLOTINE

j. Personnel parachute safety pin line – NOT THROUGH GUILLOTINE

k. Parachute alignment ring – SAFETY PIN LINE AND RIPCORD PIN LINE (ATTACHED TO PARACHUTE WITHDRAWAL LINE) ROUTED THROUGH, PARACHUTE WITHDRAWAL LINE ROUTED AROUND

l. Check security of parachute container – PARACHUTE CONTAINER SHOULD NOT MOVE MORE THAN 1 INCH

m. Guillotine – CHECK PASSAGE AND HOSE SECURITY

n. Drogue gun assembly – SHEAR PIN INTACT, SAFETY PIN OUT; TRIP ROD CONNECTED WITH NO RED SHOWING ON INNER BARREL

o. Drogue gun cocking indicator – COCKED (some aircraft)

 If the indicator is approximately 1/2 inch below the gun housing, it is cocked. If flush with the housing, it is uncocked and will not fire on ejection.

p. Rocket motor initiator – CHECK SEAR ENGAGED, SAFETY PIN REMOVED, ACTUATION LANYARD CONNECTED, HOSE ASSEMBLY CONNECTED AND PIN INSTALLED, AND TRIP ROD CABLE CONNECTED

q. Bulkhead mounted canopy initiator – LINKAGE CONNECTED, SAFETY PIN REMOVED

r. Harness assembly – CHECK

 Ensure that parachute container holddown straps are routed in front of the backpad

WARNING

If the holddown straps are hooked or routed behind the back pad, or hooked behind the emergency oxygen bottle, interference with parachute deployment will occur.

8. Emergency oxygen – PRESSURE AND SAFETY PIN REMOVED

 Proper servicing of the emergency oxygen bottle is indicated by a gage reading of 1800–2200 psi at 21°C (70°F). The pressure indication varies with temperature. To determine correct indication, add 6.5 psi for each degree above 21°C (3.5 psi/F) and subtract 6.5 psi for each degree below 21°C. Thus, the bottle is correctly serviced if the gage reads 1890–2290 psi at 35°C (95°F). See ejection seat foldout illustration for approximate pressure values for various gage needle locations.
t. Emergency oxygen actuation knob and linkage - CHECK
 Check knob not actuated. If actuated, knob is tilted approximately 45° from vertical. Check
 security of shear pin in cable to linkage connection by applying light tension on cable.
u. Leg guards - IN PLACE
v. Leg garters - LOCKED IN, AND LANYARDS NOT TWISTED
w. Survival kit - RELEASE HANDLE DOWN,
 SELECTOR SWITCH AUTO POSITION (UP)
x. Emergency harness release handle - DOWN
 WITH SEAT ENGAGED, SAFETY PIN OUT,
 AND ACTUATION LANYARD CONNECTED
y. Time release trip rod - CONNECTED
z. Personnel locator beacon (PLB) inflight mode
 selector switch - AUTOMATIC POSITION (RED
 DOT SHOWING) FOR NORMAL PEACE TIME
 OPERATIONS. SAFETY STREAMER REMOVED.
aa. Time release mechanism - CHECK BAROSTAT
 HOLES UNBLOCKED

BEFORE ELECTRICAL POWER (REAR COCKPIT)

1. AN/ALE-40 chaff dispenser - OFF
 If either the chaff or flare CCU control knob is out of
 the OFF position and a programmer malfunction occurs, flares or chaff could be
 dispensed if the pins are pulled. Therefore, if
 chaff and/or flares are loaded, it is important that
 the CCU control knobs remain in the OFF
 position until airborne for peacetime or remain
 OFF until immediately prior to takeoff for
 wartime operations.
 a. Chaff mode switch - OFF
 b. Flare mode switch - OFF
c. Ripple switch - OFF
2. Throttles - AFT
3. UHF radio - OFF
4. AVTR switch - OFF (some aircraft)
5. APX-80 mode switch - PASSIVE/OFF
6. Radar power - OFF

CAUTION

The radar power selector knob should remain
OFF until the aircraft is operating on internal power.

7. DSCG - OFF (some aircraft)
8. ECM equipment - OFF (some aircraft
 Refer to TO 1F-4E-34-1-1-1 and
 TO 1F-4E-34-1-1-2.
9. INS - OFF (some aircraft)

10. Navigational computer set control - SET (some
 aircraft)
 a. Mode selector knob - AS DESIRED
 b. INS knob - SYS OFF
11. Nuclear store consent switch - SAFE
12. NAV computer - OFF (some aircraft)
13. NWDS power switch - OFF (some aircraft)
14. Battery bypass switch - OFF
15. SST-161X pulse selector switch - OFF
16. Circuit breaker panels - CHECK
17. Electrical test receptacle plug 3P25 - ENSURE
 PLUG SEATED FLUSH, KNURED LOCK RING
 SECURE, CAP TIGHT.
 It is possible to trip both generators off the line
 if the electrical test receptacle plug 3P25 under
 the right canopy sill is loose. The plug uses a (twist
 clockwise to lock) knurled lock ring which should
 not be confused with the chain equipped thread-
 ed cap.
18. Publications and flight data - CHECK

AFTER ELECTRICAL POWER (REAR COCKPIT)

1. Instrument ground power switch - ACTUATE (cannot
 be performed when battery start is made)
2. TISEO - OFF (some aircraft)
3. Navigation computer - SET (without DMAS or
 NWDS)
 a. Present position counters - SET
 b. Target counters - SET FOR PRESENT
 POSITION
 c. Wind counters - SET PREFLIGHT WIND
 DIRECTION AND SPEED
 d. Variation counter - SET LOCAL MAGNETIC
 VARIATION
 e. Position update switch - NORM
 f. Function select knob - STBY
g. INS power control knob - STBY
 h. Function selector knob - RESET

 Coordinates may be stored in the navigation
 computer by placing the function selector knob
 to RESET. The coordinates stored in the
 AN/ASN-46A are those in the target windows.
 i. Function selector knob - TGT1 OR TGT2 AS
 DESIRED

 With the NAV mode selector switch in BRG-
 TRACK, set the same present position and
 target coordinates. The DMF on the BDHI for
 TGT1 or TGT2 should be within 0.0 ±1.5 NM.
 j. Target counters - SET FOR TGT1
4. INS alignment - AS DESIRED (without DMAS or
 NWDS)
 Navigation accuracy is adversely affected if the
 aircraft is disturbed during INS alignment.
5. DMAS alignment - AS DESIRED (after
 TO 1F-4E-63)
 For gyrocompass and rapid reaction alignment
 procedures, refer to TO 1F-4E-34-1-1-2.
6. NWDS alignment — AS DESIRED (after TO 1F-4E-671)
 For gyrocompass and rapid reaction alignment procedures, refer to TO 1F-4E-34-1-1-3.

![WARNING]

Verify that an authorized OFP version is displayed on initialization screen. Any version that is not tested can potentially provide erroneous displays, immediate or nonrelease of weapons, and prevent proper INS alignment. Reload the system with version listed on Software Notice page or a version authorized for use by the F-4 System Program Manager.

REAR COCKPIT INTERIOR CHECK

![WARNING]

All harnessing, personal equipment leads and leg restraint lines must be secured before closing the canopy.

1. Rudder pedals - ADJUST
2. Leg restraint lines - BUCKLED AND SECURE
 Leg garters buckled and properly adjusted with garter release on the inside of the legs. Lines secure to seat and floor, and not twisted or entangled in rocket motor or rocket motor spar cable. Leg restraint lines threaded through the calf garters (double D-ring), routing first through the outboard ring and then through the inboard ring, then through the thigh garters (single D-ring) before the lock pins are inserted in the snubber boxes. Leg restraint line lock pins threaded through hold-down strap lugs on the survival kit. Survival kit-to-seat retention straps (if incorporated) attached to the leg restraint line lock pins at the lock pin attachment points.

![WARNING]

- The leg restraint lines must be buckled at all times during flight to insure legs will be pulled back upon ejection. This will enhance seat stability and will prevent leg injury by keeping legs from flailing following ejection.

- Failure to route the restraint lines properly through the garters could cause serious injury during ejection.

3. Harnessing and personal equipment leads - FASTEN
 Attach the parachute riser-shoulder harness fittings to the integrated harness. Attach and firmly adjust the survival kit straps. Secure and firmly adjust the lap belt. Connect oxygen, communication and anti-G leads. Route the anti-G hose line behind personal harness slings if hose interferes with controls on left console. Check the operation of the shoulder harness locking mechanism.

![WARNING]

Failure to adjust survival kit straps to achieve a snug fit between the crewmember and kit may result in fatal injury during ejection.

4. Ejection seat height - ADJUST (cannot be performed when battery start is made)

5. Face curtain and seat mounted initiator safety pins - REMOVED
 After all personal leads have been fastened, have ground crewmember remove face curtain and seat mounted initiator safety pins, show them to aircrew member before stowing in bag, and hand bag to aircrew member.

![WARNING]

If the seat mounted initiator safety pin is left installed during flight, seat ejection is not possible. The ejection gun firing linkage will be restrained from moving, thus preventing firing of the ejection gun.

6. Stick grip and boot - CHECK
 Check stick grip firmly attached to stick and stick boot in place with no tears.
7. Communication navigation control panel – SET
 a. Communication frequency control thumbwheels – AS REQUIRED
 b. Communication channel control knobs – AS REQUIRED
 c. Mode select switch – AS REQUIRED (some aircraft)
 d. UHF volume control thumbwheel – AS DESIRED
 e. Auxiliary channel control knob – AS REQUIRED
 f. Auxiliary volume control knob – AS DESIRED
 g. COMM-AUX pushbutton – TR + G – ADF
 h. Navigation channel control knob – AS REQUIRED
 i. Navigation volume control knob – AS REQUIRED
 j. Tscan function selector knob – OFF
 k. Communications command button – AS DESIRED
 l. Navigation command button – AS DESIRED
8. VOR/ILS/marker beacon volume – AS DESIRED (some aircraft)
9. Emergency slats flaps handle – FORWARD
10. Intercom control panel – SET
 a. Volume control knob – AS DESIRED
 b. Amplifier selector knob – NORM
 c. Function selector knob – HOT MIC
11. Emergency gear handle – IN AND SECURE
12. Emergency brake handle – IN AND SECURE
13. Slats position indicators – IN AND UP
14. Landing gear position indicators – GEAR DOWN INDICATION
15. Canopy emergency jettison handle – FORWARD
16. Radar scope – SECURE
 Check that radar scope retaining pins are properly installed.
17. Attitude indicator – CHECK AND SET (cannot be performed when battery start is made)
 a. Rotate pitch trim knob to check travel (–10° to +5°)
 b. Set horizon bar level with miniature aircraft.

WARNING

If the horizon bar will not move with the pitch trim knob, the attitude indicator is unsafe for flight.

18. Clock – WIND AND SET
19. Accelerometer – SET
20. Navigation function selector switch – AS DESIRED
21. Digital display indicator lamp button – PRESS
22. Navigational computer set control lamp button – PRESS
23. KY–23 power selector knob – OFF (some aircraft)
24. KY–23 mode selector – P (some aircraft)
25. KY–58 power switch – OFF (some aircraft)
26. KY–58 mode select knob – P (some aircraft)
27. Canopy manual unlock handle – FORWARD
28. Aural tone – AS REQUIRED
29. Cockpit lights control panel – SET
a. White floodlight switch – OFF
b. Instrument panel lights control knob – AS REQUIRED
c. Console lights control knob – AS REQUIRED
 With the console lights control knob in the OFF position, the radar scope camera green operate light will be inoperative.
d. Standby compass light switch – AS REQUIRED
e. Console floodlights switch – AS DESIRED
f. Indexer lights control knob – AS DESIRED
30. Warning and indicator lights – TEST (cannot be performed when battery start is made)
31. Intercom system – CHECK
32. Oxygen quantity gage – CHECK (cannot be performed when battery start is made)
 Check that the oxygen quantity is sufficient for the intended mission, and the OFF flag on the gage face is not visible.
33. Oxygen supply system – CHECK AND SET
 Pressure – 65–120 psi
 Regulator – CHECK
 a. Oxygen supply lever – FULLY ON
 On the CRU–73A regulator, it is possible for the oxygen supply lever to stop in an intermediate position between OFF and ON. Assure the lever is all the way on.
 b. Emergency lever – NORMAL
 c. Put mask on
 Indicator – CHECK
 a. Diluter lever – 100%
 b. Emergency lever – EMERGENCY
 c. Oxygen flow – CHECK
 Breath normally for three cycles and check flow indicator operation. Hold breath, all flow should stop and the indicator should show no-flow (black). A white indicator indicates a leak that must be corrected before flight.

Connections – CHECK

Emergency Oxygen – CHECKED

a. Pressure – CHECKED
b. Actuation knob and linkage – CHECKED

WARNING

For regulators other than the CRU–73/A, if the oxygen supply lever is OFF and the diluter lever is in NORMAL, there will be no restriction to breathing but the crewmember will be breathing cockpit air only and hypoxia will occur as cockpit altitudes that require oxygen are reached. It is therefore imperative to check for oxygen flow prior to takeoff. With the diluter lever in 100%, if the oxygen supply lever is OFF, neither cockpit air nor oxygen is available at the mask. For the CRU–73A regulator, with the oxygen supply lever OFF, neither cockpit air nor oxygen is available at the mask regardless of diluter lever position.

34. RWR systems – CHECK (as required) THEN OFF (cannot be performed when battery start is made)
BEFORE TAXIING (REAR COCKPIT)

NOTE

Since pressure vibrations in some types of shelters may cause instrument fluctuations and/or inaccurate readings, the Before Taxiing checks should be performed outside the shelter when practical.

1. Interior check — COMPLETE (battery start)
2. Anti-G suit system — CHECK
 Press and release inflation button on anti-G suit control valve. Check for proper suit inflation and deflation.
3. Communication and navigation equipment — ON & CHECK
4. Target designator — POWER ON AND STOWED (some aircraft)
5. Tiseo — ON (some aircraft)
6. Radar BIT checks — INITIATE
7. WRCS BIT checks — INITIATE (some aircraft)
8. ECM Pod — AS REQUIRED
9. Navigation computer function selector knob — AS REQUIRED (some aircraft)
 a. Steer knob — AS DESIRED
 b. Coord knob — AS DESIRED
 c. Data knob — AS DESIRED
10. Keyer control — SET (with DMAS)
11. NWDS CDU — MISSION DATA ENTERED AND SET (as required) (some aircraft)
12. Altimeter — SET AND CHECK
 a. Set current altimeter setting on the barometric scale.
 b. Altimeter pointer should indicate the field elevation within ±75 feet.
 c. With the SPC switch at RESET CORR, the STATIC CORR OFF light should go out and remain out. Disregard initial momentary engagement oscillations. Altimeter reading after oscillations stop should not exceed ±25 feet from original reading. Continued altimeter oscillations of any magnitude are unacceptable.

NOTE

Failure of the STATIC CORR OFF light to extinguish after SPC engagement could be an indication of CADC failure and the mission should be aborted.

d. With the static correction on (SPC engaged), the altimeter should indicate the field elevation within ±90 feet.
e. The difference between the front and rear cockpit altimeters should not exceed 100 feet.
f. Place the altimeter switch to RESET. Altimeter should not vary more than ±75 feet and the red STBY flag should not be in view.
g. The altimeter should indicate the field elevation within ±75 feet.
h. With both altimeters in RESET, the difference between the front and rear cockpit should not exceed 75 feet.

NOTE

If the altimeter is not within tolerance in RESET, the aircraft may be flown in the STBY mode provided that, in the STBY mode, the altimeter checks within ±75 feet of field elevation. The ±75 feet of field elevation is an operational restriction and does not necessarily reflect instrument tolerances.

13. INU — NAVIGATE (some aircraft)
 When the INU has completed a satisfactory alignment (with NAV READY displayed in normal video) the WSO should press the switch on the CDU followed by a valid destination number, followed by ENT, or press the A key to advance the system to the first destination, to place the INU in navigate mode.

TAXIING

1. Wheel brakes — TEST
 After initial roll, apply the wheel brakes to check their operation.
2. Nose gear steering — ENGAGE AND CHECK
 Engage nose gear steering and actuate in both directions to ensure proper operation.

CAUTION

- Taxi with canopies full open or full closed; with the canopies open, maintain taxi speeds below 60 knots to prevent damage to the canopy operating mechanism.
- Adequate distance between aircraft must be maintained during formation taxi. An open canopy may be damaged by engine exhaust blast.
- While taxing during high gross weight conditions, the turning radius should be increased and speed reduced to minimum practical to relieve excessive side loads on the main landing gear struts, wheels, and tires.

3. (P-WSO) Flight instruments — CHECK OPERATION
4. (P-WSO) Oxygen diluter lever — AS REQUIRED

BEFORE TAKEOFF

CAUTION

Exercise care in positioning the aircraft on the runway during formation operations. Clearance behind aircraft should be 150 feet at military thrust settings and 300 feet at maximum thrust settings. Try to stagger the airplane positions so that no aircraft is directly behind another. Ensure that the canopies are closed and locked. Refer to figure 2-3 for Danger Areas.
TURNING RADIUS AND GROUND CLEARANCE

AIRPLANE BEING TAXIED

- Under high gross weight conditions the turn radius should be increased to relieve side loads on the main gear tires.

- If the situation warrants the airplane can be pivoted around the gear by locking the applicable brake. However, doing so squats the locked tire excessively.

AIRPLANE BEING TOWED

Note

Towing the airplane with the tow bar 90° to the axis of the airplane will provide the shortest over all turn radius.

Figure 2-4
1. Optical sight - CHECK
2. (P-WSO) Harnessing and leads - FASTENED
 Parachute risers, lap belt, leg restraint lines and all other harnessing and leads fastened.
3. Internal wing transfer switch - NORMAL
4. Stab aug switches - ENGAGE
5. Flight controls - UNRESTRICTED (WSO visually check control surfaces)
6. Slats flaps - CHECK OUT AND DOWN
 If flaps are raised after leaving the flight line, they must be visually checked out and down when they are again lowered.
7. Anti-ice switch - AS REQUIRED
8. Stabilator trim - CHECK 1 TO 3 UNITS NOSE DOWN
9. Fuel quantity - CHECK
10. (P-WSO) Canopies - CLOSE, CHECK WARNING LIGHT OUT AND STRIPES ALIGNED
 a. Operate engines at idle rpm.

CAUTION

Closing of either canopy with engine rpm above idle may result in the canopy not fully locking due to premature canopy seal inflation and/or back pressure caused by cockpit pressurization system.

b. Set air temperature control knob no higher than 2 o'clock and the defog-foot heat lever in foot heat. An air temperature control knob setting higher than 2 o'clock may prevent the canopy from fully locking due to excessive pressure.

c. Close aft canopy. Ensure closing time does not exceed 9 seconds from lower actuation to completion of locking cycle. Check aft CANOPY UNLOCKED light out, forward CANOPY UNLOCKED light ON.

d. Close forward canopy. Ensure closing time does not exceed 9 seconds from lower actuation to completion of locking cycle. Check forward CANOPY UNLOCKED light out. WSO observe front canopy actuator sheer pin for integrity and actuating cylinder full up.

CAUTION

The center mirror on the forward canopy can be tilted sufficiently to prevent canopy closing; therefore, assure that the mirror will clear the windshield bow before closing canopy.

e. Check that alignment stripe on canopy lock push rod aligns with the alignment stripe on the bracket hanging from the left canopy sill. The canopy over-center locking mechanism does not actually lock the canopy until approximately the last 1/4 inch of push-pull rod movement.

WARNING

If a canopy malfunction occurs during the closing cycle or in the event that either the front or aft CANOPY UNLOCKED light remains on after attempted closure, refer to Canopy Malfunction, section III.

CAUTION

To ensure canopy retention during flight, the canopy control handle must be retained in the closed (full forward detent) position.

11. Defog-foot heat and temperature controls - AS REQUIRED
 When operating in high humidity conditions, a higher than normal temperature setting (3 o'clock or above) may be required to prevent cockpit fogging.

WARNING

A cockpit temperature malfunction (cold) in high humidity conditions may cause sufficient fog to obscure forward visibility during takeoff roll. A defog-foot heat setting forward of foot heat may compound the forward visibility problem and require immediate action to dump the cabin pressure in order to maintain visual contact with the runway or leader.

12. (WSO) Command selector valve - AS BRIEFED
13. (P-WSO) Lower ejection valve - AS DESIRED

WARNING

The lower ejection valve safety guard, when lowered too rapidly, can rebound to the safe position.

14. Warning lights/voice warning system - TEST
 After TO 1F-4-1292, CANOPY—CANOPY ALTITUDE—ALTITUDE is heard in both headsets when the front cockpit warning lights test switch is placed to TEST (WARN TEST).
 After TO 1F-4-1262, TO 1F-4-1494, and TO 1F-4-1503, FIRE—FIRE, CANOPY—
 CANOPY ALTITUDE—ALTITUDE is heard. Adjust voice warning volume as desired.

After runway line-up -

15. External transfer switch - AS DESIRED
If external tanks are installed, and the external transfer switch is positioned to OUTBD or CENTER, internal wing fuel will not transfer even though the internal wing transfer switch is positioned to NORMAL.

- Have any leak which cannot be positively identified as the dump mast investigated prior to takeoff.

16. Anti-skid – ON, LIGHT OUT
17. Compass heading – CHECK
 If a significant error exists on the HSI compass card resynch the compass by placing the compass controller mode switch to the SYNC position momentarily. If this doesn’t resolve the problem or the heading returns to an incorrect heading when the switch is released, wait 20 seconds and repeat the procedure. If the heading remains incorrect, check the AN/AJB-7 heading by placing the reference system selector to STBY and note difference between PRIM and STBY headings.

18. Pitot heat – ON
 Pitot heat should not be used for more than 1 minute on the ground.

19. IFF – AS REQUIRED
 If the KIT-1A transponder is installed and keyed, the Mode 4 ON/OFF switch must be ON and the master switch in LOW or NORMAL to prevent illumination of the IFF and MASTER CAUTION lights during MODE 4 interrogations.

20. (P-WSO) Circuit breakers – CHECK
21. Warning lights – CHECK
22. Radar altimeter – OFF (after TO 1F–4–1262)
 After TO 1F–4–1262, turn radar altimeter OFF until above low altitude warning setting to prevent an ALTITUDE-ALTITUDE voice warning during taxi, takeoff or after takeoff-climb.

TAKEOFF

NORMAL TAKEOFF

The slats out–flaps down position is recommended for all takeoffs. After taking the runway and completing necessary pre–takeoff checks, engines can be run to 85% with brakes held and nose gear steering engaged to ensure nose gear alignment (figure 2–5). With both engines operating in excess of 85% and the brakes locked, there is a possibility of rotating the tires on the wheel rims or skidding the tires. Check for normal rpm response and approximate readings of 450°C EGT, 4000 pph fuel flow, 14 nozzles, and 30–40 psi oil pressure. If readings are significantly different, run the affected engine(s) individually to MIL and compare with section V limits. After releasing brakes, advance both throttles rapidly to full military power and check rpm, exhaust temperatures and nozzle position. WSO check the ramps fully retracted. If an afterburner takeoff is desired, shift the throttles into the afterburner detent and advance full forward for max thrust. Maintain directional control with nose gear steering or rudder as required. The rudder becomes effective for steering at approximately 70 knots. Do not use wheel braking for directional control during takeoff roll except in an emergency. Nose gear steering should be disengaged when rudder steering becomes effective. If it becomes necessary to re–engage nose gear steering at the higher speeds, rudder pedals should be returned to neutral prior to engagement since rudder displacement necessary for rudder steering will generally be excessive for nose gear steering. Sufficient aft stick should be applied prior to nose wheel liftoff speed to attain the desired pitch attitude. As the nose rises, pitch attitude must be controlled to maintain a 10° to 12° (first pitch mark) nose high attitude for aircraft fly–off. Caution must be exercised to preclude over–rotation due to excessive aft stick rate or an extended takeoff roll due to late lift–off. The basic takeoff attitude should be held during acceleration and transition to a clean configuration. Trim change and control action during this period are normal. The AUX AIR DOORS, WHEELS, and MASTER CAUTION lights may illuminate momentarily as the landing gear and flaps are retracted.

WARNING

Nose gear steering (NGS) malfunctions can cause loss of directional control. If unscheduled steering responses are detected when using NGS before rudder control becomes effective, disengage NGS immediately and use brakes as required for directional control. Do not reengage NGS.

CAUTION

Rapid full aft movement of the stick between takeoff airspeed and 80 knots below takeoff airspeed may result in the stabilator hitting the runway with the possibility of stabilator actuator damage.

NO–FLAP TAKEOFF

No–flap takeoffs are not recommended. However, if it is determined that no–flap takeoffs must be performed to satisfy mission requirements, aircrews should be aware that takeoff roll and airspeed will be increased and the takeoff attitude will be slightly steeper. Stabilator effectiveness is considerably increased and extreme caution must be exercised to prevent overrotation which could result in the stabilator striking the runway.

WARNING

Due to increased stabilator authority with the flaps up, aircraft rotation can be initiated at lower than normal airspeeds and overrotation is a definite possibility. If it appears that overrotation is occurring, positive control movement (stick forward) must be taken to prevent the stabilator from contacting the runway and/or loss of aircraft control.
MINIMUM RUN/HEAVY GROSS WEIGHT TAKEOFF

A minimum run/heavy gross weight takeoff (aircraft over 65,500 pounds) is accomplished in the same manner as a normal takeoff with the following exceptions: It is recommended that all minimum run/heavy gross weight takeoffs be made with afterburner. During the takeoff run, full aft stick must be applied prior to reaching 80 knots. As the aircraft starts to rotate, the stick should be adjusted to maintain 10° to 12° pitch attitude for aircraft fly-off. The possibility of a main landing gear tire failure increases with an extended takeoff ground run under heavy gross weight conditions. Nose wheel liftoff speed and takeoff speed is increased during heavy gross weight conditions. In the event of an aborted takeoff, it must be remembered that stopping distance is greatly increased as abort speed increases.

CAUTION

With a combination of light gross weight and aft CG, the minimum run takeoff technique (i.e., full aft stick prior to reaching 80 knots) produces rapid pitch rates during nose rotation. This combination can exist when the radar package and nose gun (or equivalent ballast) are not installed.

CROSSWIND TAKEOFF

Under crosswind conditions, the aircraft tends to weather vane into the wind. The weather vaning tendency can be easily controlled with nose gear steering. As forward speed increases, weather vaning tendency decreases. At speeds above 70 knots rudder effectiveness will normally be sufficient to maintain directional control. After the nose is lifted to takeoff attitude, the aircraft will have a tendency to drift toward the downwind side of the runway. Therefore, when a long time period is expected between nose lift-off and aircraft fly-off, or when the crosswind effect is particularly severe, nose lift-off can be delayed accordingly. Under normal operational conditions this action should not be required. As the aircraft leaves the ground, it should be cranked into the wind, wings level, to maintain runway alignment. Takeoff in gusty crosswind or severe wake turbulence conditions can result in an abrupt wing low attitude at or near lift-off. When these conditions are anticipated, use higher than computed takeoff speed to provide additional lateral control after lift-off.

AFTER TAKEOFF – CLIMB

When the aircraft is definitely airborne–

1. Gear – UP
 Check that the landing gear position indicators display the word UP, and that the landing gear
handle warning light is out.

CAUTION

- The landing gear and gear doors should be completely up and locked before the gear limit airspeed of 250 knots is reached, otherwise, excessive air loads may damage the landing gear mechanism and prevent subsequent operation.

- When actuating the landing gear, keep a forward pressure on the landing gear control handle to prevent inadvertent actuation of the emergency system.

2. Slats flaps - NORM (180 knots minimum)
 Check that slat flap indicators display IN and UP. Rudder jumps may occur during flap retraction with a lateral stick input. If an audible (noticeable in head phones) chattering associated with slat flap and utility hydraulic pressure indicator fluctuating in unison occurs during slats retraction, maintain airspeed below 250 knots and cycle slats flaps. If slat chatter occurs during maneuvering at altitude, it may require opposite slats positioning from where chatter occurs. If chatter persists, extend slats flaps and land as soon as practical. If cycling (slats repositioning) eliminates chatter, continue mission and make an appropriate entry in AF Form 781.

CAUTION

Continued or prolonged operation with flap or slat chatter will damage actuator(s) and mechanisms.

NOTE

- During the climb, it may be necessary to place the antenna selector switch to the LWR position to maintain ground communication.

- When transmitting on UHF using the lower antenna, a change in engine operation could occur. This can be seen as a shift or fluctuation of EGT, RPM, FUEL FLOW, and NOZZLE position.

CLIMB

A simplified climb can be made by maintaining a 10° to 12° (first pitch mark) nose high altitude until reaching 350 knots and then vary pitch as necessary to maintain 350 knots until reaching cruise Mach/TAS. Vary pitch as necessary to maintain cruise Mach/TAS until reaching cruise altitude. A simplified Maximum thrust climb, at normal gross weights, can be made by maintaining a 10° to 12° nose high altitude until reaching 350 knots and then vary pitch as necessary to maintain 350 knots until reaching Mach 0.9. Vary the pitch attitude as necessary to maintain Mach 0.9 until reaching cruise altitude.

CRUISE

1. (P-WSO) Altimeters - SET, CHECK STBY, RESET, COMPARE
 The following maximum tolerances should be met at subsonic speeds:

<table>
<thead>
<tr>
<th>ALT FT</th>
<th>DIFF FRONT & REAR FT</th>
<th>ALTM JUMP (STBY TO RESET) FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTH</td>
<td>BOTH</td>
<td>BOTH</td>
</tr>
<tr>
<td>10,000</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>20,000</td>
<td>250</td>
<td>75</td>
</tr>
<tr>
<td>30,000</td>
<td>350</td>
<td>75</td>
</tr>
</tbody>
</table>

NOTE

- If the altimeter is not within tolerance in RESET, the mission may be continued in STBY. Altimeter accuracy will be degraded.

- The allowable difference between the front and rear altimeters in different modes is 200, 300 and 400 feet for altitudes of 10,000, 20,000 and 30,000 feet respectively.

2. Radar altimeter - AS REQUIRED
3. (P-WSO) Survival kit selector switch - AS DESIRED
4. (P-WSO) Ops check
 a. Oxygen quantity/pressure blinker
 b. Cockpit pressure indicator
 c. Fuel quantity/transfer switches
 If carrying external tanks, turn external fuel transfer switch to OFF after external tanks are empty, and keep internal wing transfer switch in NORMAL
 d. Standby compass
 e. Circuit breakers
5. Anti-ice switch - AS REQUIRED

WARNING

- When transfer of external fuel is selected, transfer of internal wing fuel is stopped automatically and cannot be regained until the external wing fuel transfer switch is turned OFF, even though the internal wing transfer switch is positioned to NORMAL. However internal wing fuel and external fuel will simultaneously transfer when the automatic fuel transfer circuit is energized. When the external fuel tanks are not carried, the external wing tank transfer switch is inoperative.

- The possibility exists that engine flameout may occur while flying above 50,000 feet in cirrus clouds. Such incidents have occurred, and are generally believed to have been caused by excessive ingestion of ice crystals. Under such conditions, ice buildup on the duct lips or other
CAUTION

If it is suspected that the brakes have been used excessively, and are in a heated condition, the airplane should not be taxied into a crowded parking area. Peak temperatures occur in the wheel brake assembly 30 minutes after maximum braking. To prevent brake fire and possible tire explosion, the specified procedure for cooling brakes should be followed.

10. Mode 4 selector – HOLD (if another flight is anticipated in code period).
11. ECM/ALE/RWR/APX – OFF
12. Radar/CW power – OFF
13. (WSO) AVTR – OFF (some aircraft)
14. Stab aug switches – OFF
15. Internal wing dump switch – NORMAL

CAUTION

The internal wing dump switch must be placed to NORMAL position prior to engine shutdown. If the switch is left in DUMP, fuel spillage will occur during refueling with battery power.

16. VOR/ILS control panel – OFF
17. Engine anti-ice switch – NORMAL
18. Radar altimeter – OFF
19. Stabilator trim – SET 1 TO 3 UNITS NOSE DOWN
20. Reference system selector – STBY
21. Rain removal switch – OFF
22. Pitot heat switch – OFF
23. IFF – OFF
24. Temperature control knob – FULL HOT
 Place the temperature control knob to full HOT to evaporate any water that may have collected in the air conditioning system during descent.
25. Defog–foothot control handle – DEFOG
27. Formation lights – OFF
28. Sight shutter – CLOSED
ENGINE SHUTDOWN

1. Wheels – CHOCKED
2. UHF radio – OFF
3. (P-WSO) Ejection seat – RAISE
 The seat should be elevated to facilitate cockpit cleaning. If personnel lowering devices are installed, lean forward while raising the seat and avoid pressure on the seat back pad so it will not impinge on the bottom of the parachute container.
4. Defog-footrest control handle – FULL AFT
5. Temperature control knob – 12 O’CLOCK POSITION
6. Air refuel switch – AS REQUIRED
 Extend air refueling receptacle if air refueling was accomplished during mission.
7. (WSO) Inertial navigation power control knob – OFF (or align if required – then OFF) (without DMAS or NWDS)
8. (WSO) Navigation Computer – OFF (without DMAS or NWDS)
9. (WSO) Data transfer module – STORE DATA (with DMAS)
10. (WSO) Navigation computer set control INS knob – SYS OFF (or align if required – then SYS OFF) (with DMAS)
11. (WSO) Memory snapshot – PERFORM (with NWDS)
 a. Enter aircraft final parking coordinates into a D point on the destination table.
 b. Command a FLY-TO the D point created above.
 c. Select the Maintenance Menu – SHFT–PMD, L1, F2
 d. Command RER calculation by selecting the TAKE SNAPSHOT option on the Maintenance Menu (L3) once the aircraft has reached its final parking spot.

 NOTE

In order for the system to calculate an RER, a GC alignment must have been accomplished prior to takeoff, groundspeed must be less than 50 knots at the time of the snapshot, and navigation time must be greater than 90 minutes.

12. (WSO) Stored heading alignment – COMPLETE (if required (with NWDS)
 For gyrocompass and stored heading alignment procedures, refer to TO 1F-4E-1-1-3.
13. (WSO) NWDS power switch – NWDS, THEN OFF
 Pause with the NWDS power switch in NWDS until the INS OUT light comes on (approximately 5 seconds) then place the NWDS power switch to OFF.
14. (WSO) DTC/DTM – REMOVE (if required) (some aircraft)
15. AVTR tape – REMOVE
16. (WSO) Target designator – OFF (some aircraft)
17. Right throttle – OFF
 On aircraft thru 69–7579, the right generator out light illuminates when the generator drops off the line. On aircraft 69–7579 and up, the BUS TIE OPEN light illuminates prior to the right generator out light and then goes out as the right generator out light illuminates.

 CAUTION

Excessive rapid movement of the control stick with one engine operating may rupture the inoperative power control system reservoir.

18. Spoiler actuator – CHECK
 With the left engine operating and PC-2 pressure zero, slowly deflect the control stick approximately 1 inch to the right. Have ground crew or rear seat occupant verify that the spoiler does not fully deflect and that it returns to the flush position when the stick is returned to neutral. Any discrepancy should be entered in AF Form 781.
19. Left throttle – OFF

 WARNING

When generator drops off the line the auxiliary air doors slam closed violently.

20. Engine master switches – OFF
21. APU reject switch – NORMAL (some aircraft)

BEFORE LEAVING COCKPIT

1. (P-WSO) All switches and controls – OFF
2. (P-WSO) Face curtain safety pin – INSTALLED

 WARNING

Ensure that all personal equipment leads and straps are free of cockpit controls and ejection seat handles.

3. (P-WSO) Oxygen diluter lever – 100%
SPECIAL PROCEDURES

SOLO FLIGHT INSPECTION (REAR COCKPIT)

1. Command selector valve handle - VERTICAL (closed)
2. Bulkhead mounted canopy initiator safety pin - REMOVED (all other pins installed)
 With the initiator safety pin installed, the front canopy cannot be jettisoned by means of the canopy jettison lanyard.

CAUTION

Exercise caution regarding hand movements in the vicinity of the bulkhead mounted canopy initiator linkages. Also, do not stow flight equipment or personal items in this area. Failure to comply could result in inadvertent jettisoning of the canopy.

3. Lap belt, leg restraints, and harness assembly - SECURED
4. Communication-navigation control panel - SET
 a. COMM-AUX pushbutton - TR + G - ADF
 b. Communication channel control knob/mode selector switch - GUARD
 c. Navigation function selector knob - T/R
 d. Navigation channel control knob - AS REQUIRED
5. Emergency flap handle - FORWARD
6. Function selector switch - HOT MIC
7. Amplifier selector knob - NORM
8. Oxygen supply lever - OFF
9. Emergency gear handle - IN AND SECURE
10. Emergency brake handle - IN AND SECURE
11. Radar scope retaining pins - INSTALLED
12. Radar power selector knob - OFF
13. Battery bypass switch - OFF
14. Circuit breakers - IN
15. Electrical test receptacle plug 3P325 - ENSURE PLUG SEATED FLUSH, KNURLED LOCK RING SECURE, CAP TIGHT.
 It is possible to trip both generators off the line if the electrical test receptacle plug 3P325 under the right canopy sill is loose. The plug uses a knurled (twist clockwise to lock) lock ring and should not be confused with the chain equipped threaded cap.
16. Cockpit light switches - OFF
17. All loose items - SECURE
18. All other equipment - AS REQUIRED
19. Instrument ground power switch - ACTUATE (cannot be performed when battery start is made)
 Actuate the instrument ground power switch to energize the instrument 115/200 volt ac bus and the instrument 23 volt ac bus.
20. Inertial navigation set - ALIGNED (without DMAS)
 Align the INS as outlined in After Electrical Power (Rear Cockpit).
21. DMAS - ALIGNED (with DMAS)
22. NWDS - ON, LOADED, INU ALIGNED (with NWDS)
 Refer to TO 1F-4E-34-1-1-3 for NWDS turn on procedures.
23. Canopy - CLOSED

CARTRIDGE START

This procedure is based upon external power not being available. During routine (other than scramble/exercise) cartridge starts, it is advisable to use external electrical power, if available, as this will allow use of the CNI and all engine instruments during the start. If external power is used, normal generator switching should be used. To avoid possible irritation caused by cartridge exhaust smoke/gases, it may be advisable to close canopies and select 100% oxygen during start cycle.

WARNING

Never attempt to load or unload a cartridge in either starter with the engine master switches on, ground refueling switch on, or external electrical power applied. If a malfunction in safety circuits occurs, serious injury could result.

1. Engine master switches - ON
2. Right generator switch - GEN ON
3. Ignition button - PRESS AND HOLD WHILE ADVANCING THROTTLE
 Press the ignition button and simultaneously move the throttle halfway up the quadrant, and then return the throttle to IDLE. The rear crewmember will check for appropriate throttle movement during start. If throttles are not engaged, reconnect after engine start.

Change 10 2-29
4. Engine start switch – R (right)
 The start switch should be returned to the center position once cartridge ignition is started. Releasing the spring-loaded switch may allow it to bounce across the neutral position and fire the left cartridge. Once cartridge ignition has been initiated, the engine will continue to accelerate until the cartridge propellant is consumed. The start may be discontinued by moving the throttle to OFF or, with the other engine master switch ON, moving the engine master switch to OFF.

WARNING

- If there is absolutely no indication of an engine rpm rise and no smoke is visible at the starter exhaust port, a misfire has occurred. It will not be possible to start the engine until the starter is reloaded. Refer to Cartridge Mode Starting Malfunctions, section III.

- If smoke is visible at the starter exhaust port but the engine does not reach idle rpm, a hangfire or hangstart has occurred, refer to Cartridge Mode Starting Malfunctions, section III.
15. To load additional MWODs, set channel selector knob
to 20 and repeat steps 6 through 14 above. Six most
recently entered WODs will be stored in the radio
16. Channel selector knob – 01
17. Set frequency selector knobs to current day—of—
month
18. Tones button – PRESS/RELEASE (single beep)
19. Preset/manual switch – PRESET
20. Channel selector knob – 20
21. Frequency selector knob – 220,000
22. Set pushbuttons – PRESS/RELEASE (single beep)
Radio ready to receive TUD and operate in active mode

SINGLE ENGINE TAXI

When required left engine may be shut down first.

1. Right generator switch – OFF
2. BUS TIE OPEN light – OUT
3. Utility hydraulic pressure indicators – WITHIN
 LIMITS
4. Right engine throttle – OFF (prior to entering hot
 pad area if hot refueling)

HOT REFUELING

Before refueling –

1. Single-engine taxi procedures – COMPLETE
2. (P-WSO) Leg restraints, harness and personnel
equipment leads (except oxygen and
communications) – DISCONNECT IF CANOPY
 FULLY OPEN AND WILL REMAIN OPEN
3. Internal wing transfer switch – NORMAL
4. External transfer switch – OFF
5. Air refuel switch – EXTEND
6. Stop aircraft as directed by ground crew for
tire/brake inspection and pinning of tanks and
ordnance.

WARNING

- Do not turn generator switch off during this
time as any interruption in electrical power will
cause the auxiliary air doors to close violently
with possible injury to ground crew.

- Do not enter hot pad area with hung ordnance
aboard or if a known hot brake condition exists.
If notified of hot brakes, taxi clear of the refueling
area.

7. After entering hot pad area, establish three-way
voice contact (intercom with pilot, refueling
supervisor and servicing crew member).

WARNING

Any time three-way voice contact cannot be
maintained, discontinue refueling immediately.

8. Refuel selection switch – AS DESIRED
Fuel configuration should be determined by
mission requirements/local directives.

During refueling –

1. Remain alert to all visual and voice signals from the
 refueling supervisor.
2. Monitor ground control frequency.

WARNING

- Radio transmissions are prohibited in the hot pad
area except in an emergency.

- If fuel starts venting from the aircraft, place the
refuel selection switch to INT ONLY and
discontinue refueling immediately.

- In the event of fire or fuel leak on the aircraft or
ramp area under the aircraft, shut down the left
engine and evacuate aircraft.

- In the event of fire or fuel leak in the refueling
hydrant control area (other than immediate
vicinity of aircraft), discontinue refueling and
taxi out of area if directed by ground crew.

After refueling –

1. Air refuel switch – RETRACT
2. Refuel selection switch – INT ONLY

DMAS PRE-SCRAMBLE ALIGNMENT

The following may be performed if the aircraft is to be
placed on alert status and not moved following engine
shutdown. DMAS rapid reaction alignment time is
approximately 3 minutes if the following full gyrocompass
alignment is accomplished.

1. NCSC mode knob – AS REQUIRED
2. NCSC INS knob – SYS OFF FOR 2 MINUTES
3. NCSC INS knob – STBY, THEN ALIGN
 a. Align light – ON

CAUTION

Do not move aircraft with the ALIGN light ON
or with the INS knob in ALIGN.

4. DTM – INSERT, PERFORM DATA TRANS-
FER/STORE PROCEDURE (if DTM available)
5. Power on list — PERFORM
6. Nav light — OBSERVE FLASHING
7. NCSC INS knob — SYS OFF

NWDS PRE-SCRAMBLE ALIGNMENT

The following may be performed if the aircraft is to be placed on alert status and not moved following engine shutdown. NWDS Storied Heading alignment time is approximately 90 seconds if the following full gyrocompass alignment is accomplished.

1. DTC (if required) — INSERTED IN DTU (handle down)
2. NWDS power switch — INU/NWDS
 Placing the power switch to INU/NWDS applies power to both the INU and the NWDS LRU’s. If the OFF is loaded in the NWDS, the CDU will automatically display the Initialization Display and allow verification/entry of aircraft data. If the OFF is not loaded in the ACU, a DTC containing the OFF must be installed in the DTU with the DTC handle latched down. The CDU will display the Select Configuration display to allow loading of the proper aircraft software configuration when commanded by the operator. The INU is powered on and enters a standby mode for approximately 4 seconds until a valid alignment command is received from the ACU.
3. CDU initialization display — DATA ENTERED/MODIFIED (as required)
 The initial Latitude, Longitude, and Elevation (MSL) must be entered.

NOTE

Present position data for a GC alignment must be entered within 2 minutes of alignment; otherwise, the alignment process will start over from the time of the present position entry.

4. Configuration display — VERIFY/ENTERED (as required)
5. DTC mission data — LOAD (IF REQUIRED)
 a. Initialization display — SELECTED
 b. Mission data — LOAD
6. Alignment mode — GC

NOTE

For Stored Heading Alignment (SH), a GC alignment must be completed and the NWDS shut down prior to going to NAV. The aircraft must not be moved between shutdown and completion of SH alignment at SCRAMBLE.

7. NWDS power switch — OFF
 Place the NWDS power switch to OFF when the INU alignment displays 0.8 NAV READY.

SCRAMBLE

The following scramble procedures assume that the following actions have been completed prior to the aircraft being placed on an alert status (subject to scramble type activities):

a. Complete preflight inspection to include a power-on cockpit inspection, engine operational check, and operational check of speed brakes, flaps, flight controls and stab aug in accordance with normal BEFORE TAXIING (FRONT COCKPIT) checks.
b. INS aligned and placed in heading memory. (without DMAS or NWDS)
c. DMAS pre-scramble alignment completed. (with DMAS)
d. NWDS pre-scramble GC alignment completed. (with NWDS)
e. Aircraft is cocked for scramble per local policy and instructions.

If the above actions are not completed prior to scramble, normal procedure should be used.

BEFORE TAXIING (FRONT COCKPIT)

1. Communication and navigation equipment — ON AND CHECK
2. Emergency attitude indicator — SET
3. Altimeter and SPC — SET AND CHECK
4. Takeoff trim — CHECK
5. Slats flaps — OUT AND DOWN (groundcrew visually check)
6. Clearance to taxi from WSO.
7. Reference system selector — PRIM
8. Seat pins — CHECK REMOVED AND STOWED
9. Personal equipment — CHECK
10. Wheel chocks and ground interphone cord — REMOVED

BEFORE TAXIING (REAR COCKPIT)

1. Communication and navigation equipment — ON AND CHECK
2. APX-80 mode switch — PASSIVE/OFF
3. Pressure altimeter — SET AND CHECK
4. Radar power — STBY
5. Radar overtemp light — OFF, MONTIOR
6. Navigation computer function selector knob — STBY (without DMAS or NWDS)
7. Heading memory alignment — COMPLETE (without DMAS or NWDS)
 If the inertial navigation set has not been previously aligned for heading memory, attitude reference can be obtained by performing a coarse alignment (ALIGN — wait 40 seconds — NAV).
8. Rapid reaction alignment — COMPLETE (With DMAS)
 a. NCSC mode knob — AS REQUIRED

 NOTE

 If a subsequent LORAN lock is not obtained, information is not available to the IMU to complete
 a full gyrocompass alignment (i.e., NCSC LRN status light, DDI NO SIG and NEW STA light
 remain on throughout flight). IMU navigational accuracy is degraded.

 b. NCSC INS knob — NAV
 c. Align light — ON

 CAUTION

 Do not permit aircraft to be moved while ALIGN light is on. Degraded navigation results.

 d. DTM — INSERT, PERFORM DATA TRANSFER/STORE PROCEDURE (if DTM available)
 e. Power on list — PERFORM
 f. After approximately 3 minutes, ALIGN light OFF, NAV light ON
 Aircraft may be taxied after ALIGN light goes off.

9. Stored heading/BATH alignment — COMPLETE (with NWDS)
 a. NWDS power switch — NWDS
 b. BATH alignment heading — ENTERED (if required).
 A BATH alignment provides a rapid reaction alignment capability if the aircraft was not set
 up to perform a stored heading alignment.
 c. NWDS power switch — INU/NWDS
 d. INU — NAVIGATE
 When the INU has completed a satisfactory alignment the WSO should command a
 FLY-TO or press the A key to place the INU into NAV mode. A degraded alignment may be
 accepted any time after a reverse highlighted NAV READY appears (approx 10 seconds time in
 align). A normal NAV READY will appear after approximately 90 seconds and indicates full
 system capability (0.8 NM/HR CEP).

10. Navigation computer function selector knob — AS DESIRED (without NWDS)

11. Seat pins — CHECK REMOVED AND STOWED
12. Personal equipment — CHECK
13. Notify pilot — CLEAR TO TAXI

BEFORE TAKEOFF

1. Flight instruments — CHECK AND SET
2. Stab aug switches — ENGAGE
3. Flight controls — UNRESTRICTED (WSO visually
 check control surfaces)
4. (P-WSO) Canopies — CLOSE AND CHECKED
5. (WSO) Command selector valve — AS BRIEFED
6. (P-WSO) Lower ejection handle guards — CLEAR
7. Fuel panel — SET AND CHECKED
 a. Internal wing transfer switch — NORMAL
 b. External transfer switch — AS REQUIRED
8. Slats flaps — CHECK OUT AND DOWN
9. Anti-skid — ON; LIGHT OFF
10. Warning lights — CHECKED
11. Anti-ice — AS REQUIRED
12. Pitot heat — ON
13. IPP — AS REQUIRED
14. (P-WSO) Circuit breakers — CHECK

OPERATIONS ON BOMB-DAMAGED RUNWAYS

TAXI

To prevent possible tire or structural damage, taxi speeds
on bomb-damaged surfaces should be limited to
approximately five knots. Use of braking while crossing
unrepaired spills is not recommended. Unrepaired spills
are shallow craters that are up to approximately two feet
in diameter and approximately one and one-half inches
deep.

TAKEOFFS

During operations on damaged runways containing
unrepaired spills, minimize the weight on the landing
gear to prevent excessive loads and possible structural
failure of the gear struts. A minimum run takeoff with
afterburner and flaps down should be made. During the
takeoff run, full aft stick must be applied prior to reaching
80 knots. As the aircraft starts to rotate, the stick should
be adjusted to maintain 10 to 12° pitch attitude for aircraft
fly-off.

LANDINGS

On landing, maintain maximum practical aft stick and do
not retract flaps until below 30 knots. No-flap landings
are not recommended.

NOTE

Because of the sharp impact loads on the landing
gear, the exterior of the struts and tires should be
visually inspected after each operation over
damaged runways.
SECTION III

EMERGENCY PROCEDURES

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND OPERATION EMERGENCIES</td>
</tr>
<tr>
<td>Canopy Malfunction ... 3-2</td>
</tr>
<tr>
<td>Cartridge Mode Starting Malfunctions 3-3</td>
</tr>
<tr>
<td>Cockpit Overpressurization 3-2</td>
</tr>
<tr>
<td>Emergency Entrance and Exit 3-4</td>
</tr>
<tr>
<td>Emergency Entrance/Exit (chart) 3-5</td>
</tr>
<tr>
<td>Emergency Evacuation ... 3-4</td>
</tr>
<tr>
<td>Engine Fire or Overheat During Ground Operation 3-3</td>
</tr>
<tr>
<td>Runway Departure ... 3-4</td>
</tr>
<tr>
<td>Wheel Brake Failure .. 3-3</td>
</tr>
<tr>
<td>TAKEOFF EMERGENCIES</td>
</tr>
<tr>
<td>Abort .. 3-6</td>
</tr>
<tr>
<td>Afterburner Fails To Light 3-6</td>
</tr>
<tr>
<td>Afterburner Malfunctions After Light 3-6</td>
</tr>
<tr>
<td>Auxiliary Air Door Malfunction (Gear Up) 3-8</td>
</tr>
<tr>
<td>Blown Tire During Takeoff 3-7</td>
</tr>
<tr>
<td>Engine Fire/Overheat or Failure During Takeoff 3-6</td>
</tr>
<tr>
<td>Fuel Siphoning During Takeoff/Climb 3-8</td>
</tr>
<tr>
<td>Landing Gear Fails To Retract 3-7</td>
</tr>
<tr>
<td>INFLIGHT EMERGENCIES</td>
</tr>
<tr>
<td>A11/INS Failure .. 3-36B</td>
</tr>
<tr>
<td>Advisory Messages (chart) 3-36F</td>
</tr>
<tr>
<td>Aft-Engine Malfunction During Flight 3-11</td>
</tr>
<tr>
<td>Airstart ... 3-9</td>
</tr>
<tr>
<td>Airstart Envelope (chart) .. 3-10</td>
</tr>
<tr>
<td>Airspeed Indicator Failure (chart) 3-49</td>
</tr>
<tr>
<td>Bellows Failure .. 3-30A</td>
</tr>
<tr>
<td>Bleed Air Check Valve Failure 3-12B</td>
</tr>
<tr>
<td>Bleed Air Duct Failure/Fuselage Fire 3-12B</td>
</tr>
<tr>
<td>Bus Tie Open (Both Generators Operating) 3-26A</td>
</tr>
<tr>
<td>Canopy Damage/Loss .. 3-36B</td>
</tr>
<tr>
<td>Cockpit Temperature, Extreme 3-23</td>
</tr>
<tr>
<td>Compressor Stall .. 3-12A</td>
</tr>
<tr>
<td>Controllability Check ... 3-36B</td>
</tr>
<tr>
<td>DC Bus Light On .. 3-29</td>
</tr>
<tr>
<td>DMAS Failure (PC PSW ON DDD) 3-34</td>
</tr>
<tr>
<td>DMAS Inflight Alignment .. 3-34</td>
</tr>
<tr>
<td>DMAS Navigation Computer Failure 3-34</td>
</tr>
<tr>
<td>Ejection ... 3-13</td>
</tr>
<tr>
<td>Ejection Altitude vs Sink Rate (chart) 3-19</td>
</tr>
<tr>
<td>Ejection, Minimum Ejection Altitude vs Airspeed, Dive Angle and Bank Angle (chart) ... 3-20</td>
</tr>
<tr>
<td>Ejection Procedures (chart) 3-15</td>
</tr>
<tr>
<td>Ejection Seat Descent Time (chart) 3-21</td>
</tr>
<tr>
<td>Electrical Fire .. 3-22</td>
</tr>
<tr>
<td>Electrical, Emergency Power Distribution (chart) 3-27</td>
</tr>
<tr>
<td>Engine Failure/Malfunction During Flight 3-9</td>
</tr>
<tr>
<td>Engine Failure, Double, During Flight 3-11</td>
</tr>
<tr>
<td>Engine Fire or Overheat During Flight 3-11</td>
</tr>
<tr>
<td>Equipment Cooling Turbine Failure 3-23</td>
</tr>
<tr>
<td>Flight Control Malfunction 3-30</td>
</tr>
<tr>
<td>Fuel Boost Pumps Inoperative 3-24</td>
</tr>
<tr>
<td>Fuel Leak, Fuselage .. 3-26</td>
</tr>
<tr>
<td>Fuel Transfer Failures .. 3-24A</td>
</tr>
<tr>
<td>Generator Failure, Single ... 3-26</td>
</tr>
<tr>
<td>Generator Failure, Double ... 3-26</td>
</tr>
<tr>
<td>Generator Failure, Bus Tie Open 3-29</td>
</tr>
<tr>
<td>Glide Distance .. 3-13</td>
</tr>
<tr>
<td>Hard-Over Rudder In Flight 3-30A</td>
</tr>
<tr>
<td>INS Inflight Alignment .. 3-34</td>
</tr>
<tr>
<td>INU Inflight Alignment .. 3-36B</td>
</tr>
<tr>
<td>Jettisoning .. 3-34</td>
</tr>
<tr>
<td>Jettisoning (chart) .. 3-35</td>
</tr>
<tr>
<td>Nozzle Failure, Double Exhaust 3-13</td>
</tr>
<tr>
<td>NWDS Backup Navigation Capabilities (chart) 3-36D</td>
</tr>
<tr>
<td>NWDS Failures (ACU, ATU, CDU, or INU) 3-36A</td>
</tr>
<tr>
<td>NWDS System Advisory Messages 3-36B</td>
</tr>
<tr>
<td>Oil System Failure .. 3-24</td>
</tr>
<tr>
<td>Out-of-Control Recovery .. 3-8</td>
</tr>
<tr>
<td>Power Control System Failure, Single 3-32</td>
</tr>
<tr>
<td>Power Control System Failure, Double 3-34</td>
</tr>
<tr>
<td>Radar Guide Navi Off Light 3-23</td>
</tr>
<tr>
<td>Ramp Failure .. 3-12</td>
</tr>
<tr>
<td>Reverse Fuel Transfer ... 3-25</td>
</tr>
<tr>
<td>Runway Stabilator Trim .. 3-30B</td>
</tr>
<tr>
<td>Smoke and Fumes ... 3-22</td>
</tr>
<tr>
<td>Speed Brake Emergency Operation 3-31</td>
</tr>
<tr>
<td>Spins, Inverted .. 3-8A</td>
</tr>
<tr>
<td>Spins, Upright ... 3-5</td>
</tr>
<tr>
<td>Utility Hydraulic System Failure 3-31</td>
</tr>
<tr>
<td>Utility Hydraulic And Single PC Failure 3-32</td>
</tr>
<tr>
<td>Utility Hydraulic And Engine Failure (With Or Without Single PC Failure) ... 3-33</td>
</tr>
<tr>
<td>LANDING EMERGENCIES</td>
</tr>
<tr>
<td>Airspeed Indicator Failure .. 3-49</td>
</tr>
<tr>
<td>Anti-Skid Failure, Landing With 3-40</td>
</tr>
<tr>
<td>Arresting Hook Emergency Operation 3-46</td>
</tr>
<tr>
<td>Arrestment, Approach-End .. 3-46</td>
</tr>
<tr>
<td>Arrestment, Midfield/Departure-End 3-47</td>
</tr>
<tr>
<td>Arrestment Gear Data (chart) 3-50</td>
</tr>
<tr>
<td>Aux Air Door Malfunction (Gear Down) 3-46</td>
</tr>
<tr>
<td>Blown Tire, Landing With ... 3-39</td>
</tr>
<tr>
<td>Blown Tire During Landing Rollout 3-40</td>
</tr>
<tr>
<td>Ditching (chart) .. 3-48</td>
</tr>
<tr>
<td>Engine Failure on Final ... 3-38</td>
</tr>
<tr>
<td>Engine Failure, Landing With Both Engines Inoperative 3-39</td>
</tr>
<tr>
<td>Engine Fire/Overheat On Final 3-38</td>
</tr>
<tr>
<td>Engine, Single Engine Landing 3-38</td>
</tr>
<tr>
<td>Engine, Single Engine Go-Around 3-38</td>
</tr>
<tr>
<td>Flap Failure .. 3-39</td>
</tr>
<tr>
<td>Flaps Slats Emergency Lowering 3-37</td>
</tr>
<tr>
<td>Flaps Slats, No Flaps Slats Landing With 3-37</td>
</tr>
<tr>
<td>Hard-Over Rudder, Landing With 3-42</td>
</tr>
<tr>
<td>Landing, Emergency Landing Pattern 3-37</td>
</tr>
<tr>
<td>Landing From The Rear Cockpit With Pilot Disabled 3-40</td>
</tr>
<tr>
<td>Landing Gear Malfunctions 3-42A</td>
</tr>
<tr>
<td>Landing Gear Fails To Extend 3-42A</td>
</tr>
<tr>
<td>Landing Gear Emergency Lowering 3-43</td>
</tr>
<tr>
<td>Landing Gear Emergency Retraction 3-43</td>
</tr>
<tr>
<td>Landing Gear Malfunctions—Emergency Landings (chart) 3-44</td>
</tr>
</tbody>
</table>
Nozzle, Landing With Exhaust 3-39
Nozzle Failure .. 3-39
Ramp Failure, Landing With 3-38
Split Flap/Deflected Rudder 3-38
Utility Hydraulic, Landing With 3-41
One Pump Failed .. 3-41
Utility Hydraulic, Landing With 3-41
System Failure .. 3-41
Utility Hydraulic Failure, Directional 3-41
Control After Landing .. 3-41
Warning/Indicator Lights (chart) 3-51

This section contains procedures to be followed to correct an emergency condition. These procedures will insure maximum safety for the crew and/or aircraft until a safe landing or other appropriate action is accomplished. The procedures are arranged in the most desirable sequence for the majority of cases; therefore, the steps should be performed in the listed sequence unless the pilot can determine a good cause for deviation. Multiple emergencies, adverse weather, and other peculiar conditions may require modification of these procedures.

The critical items (BOLD FACE LETTERS) contained in the various emergency procedures cover the most adverse conditions. Aircrew members will be able to accomplish bold face procedures without reference to the checklist. The nature and severity of the encountered emergency will dictate the necessity for complying with the critical items in their entirety. It is essential, therefore, that aircrews determine the correct course of action by use of common sense and sound judgement. As soon as possible, the pilot should notify the WSO, flight, or flight leader, and tower of any existing emergency and of the intended action.

The terms "Land as soon as possible" and "Land as soon as practical" are used in this section. These terms are defined as follows:

Land as soon as possible – An emergency will be declared. A landing should be accomplished at the nearest suitable airfield considering the severity of the emergency, weather conditions, field facilities, ambient lighting, aircraft gross weight, and command guidance.

Land as soon as practical – Emergency conditions are less urgent, and although the mission is to be terminated, the degree of the emergency is such that an immediate landing at the nearest adequate airfield may not be necessary.

The following basic rules apply to all aircraft emergencies and should be thoroughly understood by all aircrew:

1. Maintain aircraft control.
2. Analyze the situation and take proper action.
3. Land as soon as practical.

NOTE

- For all landings, make a fully configured (flaps OUT AND DOWN, gear down) on-speed approach unless directed otherwise.

- Should the bailout bottle be used as a back up oxygen supply, it may not provide adequate oxygen when used at low altitude.

WARNING

The canopies should be retained during all emergencies, except ditching, that could result in a crash or fire such as crash landings, aborted takeoffs, and arresting gear engagements. The protection the canopies afford the crew during these emergencies far outweigh the isolated risk of entrapment due to a canopy malfunction or overturn. During the aircraft abandonment phase, normal canopy opening procedures should be considered first to preclude the possibility of a static seat ejection.

GROUND OPERATION EMERGENCIES

CANOPY MALFUNCTION

In the event of unusual noise or other abnormal occurrence when the canopy is being closed or opened:

1. Notify egress personnel
2. (WSO) Command selector valve – VERTICAL
3. Do not actuate canopy lever
4. Remain strapped in until egress personnel check/safe the seat/canopy

WARNING

Do not taxi the aircraft with a known canopy malfunction with the canopy open. The canopy may separate from the aircraft causing damage to the aircraft and/or injury to the aircrew.

COCKPIT OVERPRESSURIZATION

1. Emergency vent knob – PULL

WARNING

Do not attempt to open the canopy by the normal method if the cockpit is overpressurized since this may cause the canopy to lift and separate from the aircraft and fall on the banana links resulting in an inadvertent ejection.
If vent knob does not relieve pressure –

2. Cockpit heat and vent circuit breaker – PULL (CS, No. 3 panel)

CARTRIDGE MODE STARTING MALFUNCTIONS

Failure to start while in the cartridge mode may be caused by a malfunction in the cartridge, the starter, or the engine. Malfunctions are classified as misfires, hangfires, and hangstarts. In addition, the starter can fail catastrophically due to overpressurization. The pilot and ground crew can recognize a misfire; however, they may not be able to distinguish between a hangfire and hangstart.

MISFIRE

A misfire is defined as a failure of the cartridge igniter squib to fire. This may be caused by a failure of the electrical ignition system, failure of the cartridge squib, or no contact between the cartridge ground clips and starter. A misfire may be detected by the absence of engine rotation and absence of smoke at starter exhaust door. When a misfire occurs, follow the Cartridge Start Malfunction procedure. After removal of the misfired cartridge, inspect cartridge ground clips to ensure they have been bent up sufficiently to make contact. Ensure that safety clip has been removed. If no obvious correctable fault can be found with misfired cartridge, another cartridge start with a new cartridge may be attempted.

HANGFIRE/HANGSTART

A hangfire/hangstart is a condition where the engine fails to accelerate in a normal manner after initiation of cartridge start. A hangfire is a cartridge malfunction where the main propellant grain does not burn or only partially ignites. In either case, the igniter squib fires, as evidenced by a small amount of smoke at starter exhaust and engine rotation to a low rpm. If the main propellant grain partially ignites, it may smolder until enough pressure has built up in the starter breech for complete ignition to occur. The smoldering may last as long as 2½ minutes. Hangfire is usually associated with extremely low cartridge soak temperature (−55°C). A hangstart is a start in cartridge mode in which engine rotation is produced but the engine does not accelerate to idle rpm.

Since the symptoms of a hangfire and a hangstart are similar and difficult to distinguish from each other, the following common procedure is established. If rpm hangs up below idle, complete the first two steps of Cartridge Start Malfunction procedure by retarding throttles to off and releasing ignition button. Be alert for possible engine rotational acceleration and re-initiate starting procedures as applicable, once sustained rotation is assured. If rotation ceases and there is no evidence of burning, complete Cartridge Start Malfunction procedure. To preclude a catastrophic failure due to a malfunctioning starter, do not attempt a second cartridge start until a successful pneumatic start has been accomplished. The malfunctioned start must be entered on Form 781 and both a successful pneumatic start and subsequent cartridge start are required to clear the 781 entry. If pneumatic start or second cartridge is unsuccessful, the starter must be removed and inspected. The second cartridge start requirement is not cause for grounding the aircraft and may be accomplished at a later time.

CARTRIDGE START MALFUNCTION PROCEDURE

1. Throttles – OFF
2. Engine master switches – OFF
3. Wait 5 minutes

WARNING

- Do not attempt to remove a cartridge until 5 minutes after all evidence of burning has ceased.
- Do not attempt to perform any work in auxiliary air door area when utility hydraulic system is pressurized unless auxiliary air door lock is installed, since any interruption of electrical power will cause the auxiliary air doors to close forcefully and could cause injury.

ENGINE FIRE OR OVERHEAT DURING GROUND OPERATION

This procedure should be completed if a FIRE/OVERHEAT light comes on or if other indications of an engine or aft section fire exists. During start, if notified by a qualified ground crewman that a tailpipe fire exists, continue the start and carefully monitor EGT and FIRE/OVERHEAT lights. If the ground crew does not specify a tailpipe fire, if there is any suspicion that the fire is not confined to the tailpipes, if the EGT approaches the limit, or if a FIRE/OVERHEAT light comes on, complete this procedure.

1. THROTTLES – OFF
2. Engine master switches – OFF

WHEEL BRAKE FAILURE

Wheel brake failure may be caused by mechanical malfunction, utility hydraulic system failure, or a malfunction of the anti-skid system. Wheel brake failure during normal anti-skid cycling is difficult to recognize and, at any time, the cause of wheel brake failure is difficult to diagnose rapidly. Therefore, the following procedure ensures that, regardless of cause, actions are taken sequentially to provide for the various contingencies.

1. Hook – DOWN
2. Brakes – RELEASE
3. Emergency quick release lever – HOLD PRESSED
4. Brakes – APPLY

Change 3
If normal braking is available without anti-skid, it is possible to lock the wheels which may cause a blown tire. The brakes may be very sensitive and, above normal braking speed, very light pedal pressure and small pedal deflection may lock a wheel. Runway condition and aircraft speed will dictate the amount of braking which can be applied. Plan to use all the available runway.

If braking returns –

5. Anti-skid switch – OFF
6. Emergency quick release lever – RELEASE
7. Hook – UP (if not needed)

If still no brakes –

5. Brakes – RELEASE

NOTE

Brakes must be released to allow emergency hydraulic fluid to enter the brake system. If not fully released, a shuttle valve prevents emergency brake fluid from entering the brake system.

6. Emergency brake handle – PULL

If the emergency brake handle in one cockpit is not effective, pull the emergency brake handle in the other cockpit.

7. Brakes – APPLY

Pedal pressure is the same as the normal system. Without anti-skid, it is possible to lock the wheels and cause a blown tire. The brakes may be very sensitive and, above normal braking speed, very light pedal pressure and small pedal deflection may lock a wheel. When practical, delay braking until slowed to normal braking speed. Slowly apply the brakes to the desired amount and hold until stopped. Plan on using all the available runway. Application and release of the brakes dumps some fluid; therefore, use steady brake pedal pressure. Do not taxi.

RUNWAY DEPARTURE

During taxi, takeoff, or landing, if departure from the load bearing surface is imminent, especially a high speed, rapid decisions must be made to minimize the risk to the crew and aircraft damage. Consideration of departure rate, angle, skid, terrain, ground condition, obstructions and ejection capability is necessary.

A go-around may or may not be possible. The ability to go-around depends on surface conditions, obstructions, distance required to accelerate to flying speed, and aircraft condition. Once airborne, consideration must be given to possible engine foreign object damage and airframe damage.

If a go-around is not attempted, consider shutting engines down to eliminate fire sources such as hot engine, pressurized hydraulics, and full power electronics. The decision to eject versus remaining with the aircraft must be tempered by the situation such as obstructions, speed, skid, crew boarding weight and landing gear integrity. In severe cases, the nose gear, or portion of it, may fail and enter the front cockpit floor resulting in possible inadvertent ejection and/or damage to the front cockpit ejection seat. A zero altitude ejection, even at high speed, may not be successful if conditions are severe. If the decision is made to eject, both crewmembers should pull their ejection handle.

EMERGENCY ENTRANCE AND EXIT

See figure 3–1.

EMERGENCY EVACUATION

[WARNING]

Crew members must coordinate the type escape to be used before initiating emergency evacuation or ejection.

1. LOWER GUARD – UP
2. SHOULDER HARNESS – RELEASE
3. INSIDE HANDLE – ROTATE AFT(completely disengage and discard)
 Survival kit release handle
 If the survival kit retaining straps fail to release or the drop line is attached to the left retaining strap, press the quick disconnect(s) in the survival kit harness attachment fittings.
4. OUTSIDE HANDLE – LOCK UP
 Emergency harness release handle. Keep your feet forward and legs relaxed until outside handle is locked up to ensure proper release of leg restraint lines.
5. Canopy – OPEN
 a. Normal
 b. Manual unlock handle
 With the normal canopy select lever in CLOSED and an operational normal system, it is impossible to unlock the canopy with the manual unlock handle.
 c. Emergency canopy jettison handle

[WARNING]

- If there is any indication of fire inside or outside the cockpit, ensure both crewmembers are ready to egress before opening either canopy.
- To prevent injury to rear crewmember, front crewmember must jettison his canopy first.

 d. Break canopy with canopy knife

[WARNING]

Knife cutting edge must face crewmember to prevent possible injury.
spin direction. The turn needle will always be pegged in the spin direction. AOA is not a primary indicator. Maintain full forward stick until the aircraft unloads. If under sustained zero or negative G with the airspeed increasing above 200 knots, the aircraft is no longer in a spin but may be in a rolling spiral preparatory to normal dive recovery. If full forward stick is maintained after flying speed is attained, inadvertent control inputs can produce yawing and rolling which may be interpreted as still being out-of-control. Use the following procedure only if the aircraft has not recovered using the Out-Of-Control Recovery procedure.

WARNING

Under most conditions, about 15,000 feet is required for spin recovery. If there is insufficient altitude for recovery, eject.

1. STICK - MAINTAIN FULL FORWARD
2. AILERONS - FULL WITH SPIN/TURN NEEDLE
3. AIRCRAFT UNLOADED - AILERONS NEUTRAL
4. If out of control at or below 10,000 feet AGL - EJECT

INVERTED SPINS

The aircraft is highly resistant to an inverted spin. Recovery from inverted spins can be accomplished rapidly with neutral flight controls. The Out-of-Control Recovery procedure will recover the aircraft from an inverted spin. However, if the pilot misidentifies inverted flight for an inverted spin and applies and holds full forward stick, a steady state inverted stall then becomes possible. A 3 to 8 units AOA recovery should be flown until sufficient speed for a dive recovery is obtained.
ENGINE FAILURE/MALFUNCTION DURING FLIGHT

If a malfunction is not immediately evidenced by explosion, engine vibration, or engine seizure, press and hold the ignition button in an attempt to restart the engine before excessive rpm is lost. A normal relight and acceleration should not be expected outside the airstart envelope, shown in figure 3-2. If engine failure occurs during air refueling, immediately disengage from the tanker and place the air refuel switch to RETRACT. On aircraft after TO 1F-4-903, the APU will provide back-up PC-1 hydraulic pressure for longitudinal control with the left engine inoperative.

To reduce the possibility of engine seizure, do not delay an airstart attempt.

SINGLE ENGINE FAILURE

With one engine inoperative, slight to moderate rudder deflection is required to prevent yaw toward the failed engine if the recommended AOA of 17 units is not exceeded. Sideslip should be kept as small as possible. Banking 5° into the good engine reduces the rudder force required to maintain zero sideslip. No one system is entirely dependent on a specific engine, thus loss of one engine will not result in the loss of a complete system. Monitor the utility hydraulic system (especially during turns) as the handling qualities are severely degraded with its failure.

Aircraft service ceiling for single-engine operation (military thrust or afterburner) is a function of aircraft configuration and gross weight. Optimum altitude and airspeed for single-engine flight can be approximated by accelerating or decelerating to 300 knots or 0.6 Mach, whichever is less. Climb or descend at military thrust to the optimum single-engine cruise altitude. Refer to Cruise Summary, One Engine Operating, figure A4-3.

During single-engine operation, use care to avoid rapid airspeed bleed-off and/or excessive sink rates. Limited thrust available makes airspeed response to power much slower than normal two engine operation. Afterburner may be required for climbs and turns.

1. Airspeed – 300 KNOTS/0.6 MACH MINIMUM
 Below 0.6 Mach, accelerate to 0.6 Mach or 300 knots, whichever is less, using altitude and thrust (afterburner if necessary). If range is a consideration, climb at 300 knots minimum until reaching 0.6 Mach, then climb at 0.6 Mach until optimum single-engine cruise altitude. If 0.6 Mach is attained at higher altitude and cannot be maintained at military thrust in level flight, descend at 0.6 Mach until descent stops. If range is a consideration, then descend to optimum single-engine cruise altitude.
2. Land as soon as practical
 Refer to Single-Engine Landing procedure.

AIRSTART

1. Engine master switch – ON
2. Throttle – OFF
3. Ignition button – HOLD PRESSED
4. Throttle – IDLE
 If no fuel flow is observed, slowly advance throttle until fuel flow is noted.
5. If no fuel flow is observed after advancing the throttle, check the main fuel control circuit breakers (H3, J1, No. 2 panel) – RESET
6. Engine rpm, exhaust temperature, oil pressure and fuel flow – MONITOR
 An engine relight is indicated by an increase in exhaust temperature, followed by an increase in engine rpm.

To reduce the possibility of engine seizure, do not delay an airstart attempt.

If a relight does not occur within 30 seconds; or the engines do not accelerate after light-off; or the exhaust temperature exceeds its maximum limits; or the oil pressure does not reach its minimum limit; retard the throttle to OFF.

MECHANICAL MALFUNCTION

An engine mechanical malfunction is usually accompanied by engine vibrations, explosions, surges, or engine seizure. If one or more of the above symptoms occur, analyze and determine the malfunctioning engine through throttle manipulation and aircraft instruments.
AIRSTART ENVELOPE

ENGINE INFLIGHT STARTING LIMITS

REMARKS
JP-GE-17A/F ENGINE AND
JP-4 FUEL
ALTERNATE FUELS

ON THE LEFT SIDE OF ENVELOPE, WINDMILL RPM NEEDED FOR RELIGHT INCREASES AS ALTITUDE INCREASES. AT 30,000 FEET THIS IS APPROXIMATELY 15 PERCENT RPM; AT 60,000 FEET APPROXIMATELY 40 PERCENT RPM IS REQUIRED, AND AT 90,000 FEET APPROXIMATELY 50 PERCENT RPM IS REQUIRED.

LOW SMOKE ENGINES

REMARKS
JP-20 GE-17EG ENGINES
JP-4, JP-6, JETA-1 FUELS
JP-5 FUEL

Figure 3-2
NOTE
Above 30,000 feet, sustained power settings above 90% rpm at subsonic speed with an inlet ramp extended may cause the fire warning light to glow faintly. If this occurs, reduce altitude and power setting as necessary to extinguish the light.

RAMPS CYCLING

A cycling inlet ramp may be detected by a cycling noise or WSO observation. It may be possible to stop the ramp in the retracted position (desirable below 1.5 Mach).

1. Applicable ramp control circuit breaker - PULL (with ramp retracted) (G6, G7 No. 2 panel)

COMPRESSOR STALL

A compressor stall is an aerodynamic disruption of airflow through the compressor, and is caused by subjecting the compressor to a pressure ratio above its capabilities at the existing conditions. The compressor capability may be reduced by FOD, corrosion, rocket/miissile motor exhaust, gun gases, misrigged or malfunctioning IGV’s. In addition, the compressor may also be subject to abnormal operating conditions as a result of a malfunction of the ramp or bellmouth system. Compressor stalls may be self-clearing, may cause the engine to flameout, or may result in a steady state, fully developed stall. The first case requires no immediate action. In the second case, the flameout clears the stall and an airstart is required. The third case requires recognition and corrective action to restore thrust and prevent engine damage by overtemperature.

The stall can be recognized by the simultaneous existence of high EGT, low rpm, low fuel flow, open nozzle, loss of thrust, and lack of engine response to throttle. Compressor stalls may be accompanied by muffled bangs. The most positive stall clearing procedure is to shut down the engine and perform an airstart. In the event of a steady state compressor stall, shut off and restart. A throttle chop to idle may clear the stall if a significant fuel flow reduction from the stall condition is achieved. If the stall is cleared but desired thrust cannot be obtained because of repeated stalling, the engine may be operated at any obtainable rpm, as long as EGT is within limits.

1. Throttle - IDLE

If stall does not clear -

2. Generator switch - OFF
 The generator is turned OFF before placing the throttle OFF to prevent the bus tie from opening when an underspeed occurs as rpm decreases. Turn the generator switch ON after the engine is restarted. After TO 1F-4E-262, turning the left generator off may cause loss of DMAS alignment.
3. Throttle - OFF
4. Inlet ramps - CHECK FULLY RETRACTED
5. Ignition button - HOLD PRESSED
6. Throttle - IDLE
 If throttle position beyond normal cruise setting is used, engine hang-up may occur due to back pressure caused by reduced nozzle area.
7. Engine rpm, exhaust temperature, and fuel flow - MONITOR
8. Generator switch - ON
BLEED AIR DUCT FAILURE/FUSELAGE FIRE

Severe damage to the aircraft may result from a bleed air duct failure due to the high temperature produced by the bleed air system. This air, leaking from a failed duct, may ignite flammable material in the vicinity of the leak and may cause failure of unrelated aircraft systems which have components in the vicinity of the leak. The following symptoms may be indicative of a bleed air system failure: a mild audible thump or bang on the airframe; complete or partial loss of cockpit pressurization; loss of pylons, missiles or other external stores; generator failure; popping of circuit breakers and illumination of several warning/indicator lights; erratic fuel quantity indications; mild stick transients; stiffness of throttles; hydraulic/pneumatic failure; nozzles open; smoke emitting from the intake duct louvers; fuel fumes in the cockpit; high fuel flow/erratic response to throttle movement (indicative of main fuel hose rupture). Make an arrested landing if possible, but do not delay landing waiting for arresting gear.

Complete loss of oxygen and heavy smoke in the cockpit may be due to a bleed air failure/fire in the door 16 or 22 area. Early ejection is recommended if a fire in the door 16/22 area is indicated. The WSO may have to use the Canopy Fails To Separate procedure during the ejection sequence due to fire damage to the rear canopy jettison air bottle.

CAUTION

Early analysis of a bleed air duct failure is required to prevent serious damage or loss of the aircraft and/or to prepare for ejection if the situation rapidly deteriorates.

If several symptoms occur –

1. Attain and maintain safe ejection altitude
2. Reduce power to minimum practicable

3. Oxygen regulator – 100% AND EMERGENCY
 Placing the diluter lever to 100% AND the emergency lever to EMERGENCY will provide pure oxygen under positive pressure. This will prevent smoke and fumes from entering the mask even if the mask leaks.

WARNING

The emergency oxygen supply (bailout bottle) does not supply sufficient flow for normal breathing unless the supply hose is disconnected from the CRU-60/P. This action will permit smoke and fumes to enter the mask.

4. Check for indications of fire

If fire confirmed –

5. Eject

If fire not confirmed –

5. Maintain minimum practical power
7. Maintain safe ejection altitude as long as practical
8. Land as soon as possible
9. Make an arrested landing (if possible)

BLEED AIR CHECK VALVE FAILURE

No indication of a bleed air check valve failure will be noted in flight until the throttle is retarded and then readvanced on the engine with the failed bleed air check valve. If the throttle has been retarded and then readvanced, either rpm will hang-up or a minor compressor stall and flame-out will occur at
EJECTION PROCEDURES

BEFORE EJECTION

A. IF TIME AND CONDITIONS PERMIT
- ALERT OTHER CREWMEMBER
- TIGHTEN LAP BELT
- TIGHTEN SEAT KIT STRAPS
- FULLY INSERT OXYGEN MASK BAYONETS
- LOWER HELMET VISORS
- TIGHTEN CHIN STRAP
- ADJUST SITTING HEIGHT IF NECESSARY
- STOW LOOSE EQUIPMENT
- LOCK SHOULDER HARNESS
- NOTIFY CONTROLLING AGENCY

B. SIT ERECT, BUTTOCKS BACK, SHOULDERS AGAINST PARACHUTE PACK, HEAD ERECT, SPINE STRAIGHT, LEGS EXTENDED AND THIGHS ON SEAT CUSHION.

C. THE FORWARD CREWMEMBER WILL NORMALLY INITIATE EJECTION SEQUENCING, HOWEVER, THE AFT CREWMEMBER MAY INITIATE SINGLE OR DUAL SEQUENCING WHEN REQUIRED. THE CREWMEMBER NOT INITIATING THE EJECTION SHOULD BE ALERTED AND ASSUME THE PROPER BODY POSITION WITH HANDS ON THE HANDLE TO AVOID POSSIBLE INJURY.

1. Ejection Handle - PULL

- IF THE CONTROL STICK IN THE REAR COCKPIT IS IN THE FULL AFT POSITION FOR ANY REASON, USE OF THE LOWER EJECTION HANDLE MAY BE RESTRICTED DUE TO INTERFERENCE FROM THE CONTROL STICK. FULL OR NEAR FULL UP SEAT HEIGHT ADJUSTMENT MAY IMPEDIE USE OF THE FACE CURTAIN. A COMBINATION OF BOTH THESE CONDITIONS MAY CAUSE DIFFICULTY IN INITIATION OF EJECTION FROM THE REAR COCKPIT.

LOWER HANDLE METHOD

FACE CURTAIN METHOD

GRASP THE LOWER EJECTION HANDLE USING A TWO HANDED GRIP WITH THE THUMB AND AT LEAST TWO FINGERS OF EACH HAND. PULL STRAIGHT UP ON LOWER HANDLE AND MAINTAIN A CONTINUED PULL. WHEN CANNOPY JETTISONS, CONTINUE PULLING UP ON LOWER EJECTION HANDLE UNTIL FULL TRAVEL IS REACHED.

REACH OVERHEAD WITH PALMS AFT KEEPING ELBOWS SHOULDER WIDTH APART. GRASP FACE CURTAIN HANDLE. PULL FORWARD AND DOWN AND MAINTAIN A CONTINUED PULL. WHEN CANNOPY JETTISONS, CONTINUE PULLING FACE CURTAIN UNTIL FULL TRAVEL IS REACHED.

WARNING

FAILING TO PULL THE LOWER EJECTION HANDLE STRAIGHT UP CAUSES BINDING WHICH CAN PREVENT THE LOWER EJECTION HANDLE FROM WITHDRAWING FROM ITS LOCKING DETENT.

WARNING

ONCE FACE CURTAIN HAS BEEN UTILIZED, DO NOT RELEASE HANDLE. IF THE HANDLE IS RELEASED IT MAY BECOME ENTANGLED IN THE SEAT BRODUE CHUTE DURING THE EJECTION SEQUENCE.

WARNING

IF OUT-OF-CONTROL AT OR BELOW 10,000 FEET AGL, EJECT. IN CONTROLLED FLIGHT MINIMUM EJECTION ALTITUDE IS DEPENDENT ON DIVE ANGLE, AIRSPEED AND BANK ANGLE. RECOMMENDED MINIMUM IN CONTROLLED FLIGHT IS 2000 FEET AGL.

Figure 3-3 (Sheet 1 of 4)
CANOPY AND EJECIION SEAT FAILURES

CANOPY FAILS TO SEPARATE

1. Continue holding ejection handle without applying tension and keep elbow in forward aircraft orientation.

2. Normal canopy control handle – OPEN

WARNING

With the normal canopy control handle in CLOSED and an operational normal system, it is impossible to unlock the canopy with the manual unlock handle.

If canopy still fails to separate—

4. Canopy emergency jettison handle – PULL

If canopy still fails to separate—

5. Put negative G's on aircraft and firmly bump forward edge of canopy with heel of hand.

Note

As last resort use canopy breaker knife and follow procedures for ejection seat failure.

When canopy separates—

6. Ejection handle – PULL

EJECTION SEAT FAILURE

After canopy separation, if seat fails to fire—

1. Ejection handles – PULL

If seat still fails to fire—

2. Perform manual bailout

MANUAL BAILOUT

1. Canopy – JETTISON

2. Maintain 200–250 knots (if possible)

3. Outside handle (emergency harness release) – LOCK UP

4. Full nose down trim, full rudder trim and opposite aileron trim as required to hold wings level

5. Stick – RELEASE

6. Parachute – DEPLOY (below 10,000 feet)

7. Inside handle (survival kit) – PULL (as applicable)

Figure 3–3 (Sheet 2 of 4)
FUEL TRANSFER FAILURES

INTERNAL WING FUEL FAILS TO TRANSFER

Failure of internal wing fuel to transfer can be caused by the tanks failing to pressurize or the transfer valves failing to open.

1. External transfer switch – OFF
2. Internal wing transfer switch – NORMAL
3. Tank depressurization switch – NORM (some aircraft)
4. Air refuel switch – RETRACT (If retracted, cycle)
 To cycle the fuel pressurization system without opening the receptacle door, first pull the air refuel receptacle circuit breaker (D1, No. 2 panel), then cycle the air refuel switch.
5. Internal wing fuel transfer control circuit breaker – IN (H2, No. 2 panel)

If fuel still fails to transfer –

6. Reduce airspeed below 250 knots, lower landing gear and check for fuel transfer.
 Failure of fuel to transfer may be the result of malfunctioning landing gear scissors switch which may disable the nose gear steering and/or cause anti-skid system to cut out without warning.

EXTERNAL FUEL FAILS TO TRANSFER

Failure of external fuel to transfer can be caused by the tank shut-off valve failing to the closed position or the tank failing to pressurize.

1. External transfer switch – CENTER/OUTBD
2. Air refuel switch – RETRACT (If retracted, cycle)
 To cycle the fuel pressurization system without opening the receptacle door, first pull the air refuel receptacle circuit breaker (D1, No. 2 panel), then cycle the air refuel switch.
3. External wing fuel transfer control circuit breaker – IN (J2, No. 2 panel)
4. Fuel valve power circuit breaker – IN (H1, No. 2 panel)

If fuel still fails to transfer –

5. Reduce airspeed below 250 knots, lower landing gear and check for fuel transfer.
 Failure of fuel to transfer may be the result of malfunctioning landing gear scissors switch which may disable the nose gear steering and/or cause anti-skid system to cut out without warning.

If fuel still fails to transfer –

6. External transfer switch – OFF

If single outboard tank fails to transfer –

7. Refer to Controllability Check, this section

Change 10 3-24A/(3-24B blank)
FUSELAGE FUEL FAILS TO TRANSFER

A malfunction of the electrical fuel transfer pumps or the fuel level control valves may be indicated by a FUEL LEVEL LOW warning light while fuel on board is sufficient to keep the fuel tanks full. A malfunction of the electrical fuel transfer pumps is indicated if one or more of the transfer pump or transfer pump control circuit breakers (D3, E3, F3, G3, D4, E4, F4, G4, No. 2 panel) is popped. A malfunctioning fuel level control valve may prevent pressure fuel transfer even though the hydraulic transfer pumps are operating. Pulling the fuel valve power circuit breaker (H1, No. 2 panel) will ensure that the fuel level control valves in cells 1 and 2 are open and prevents any external fuel from transferring into the fuselage cells.

If complete transfer pump failure occurs, or if fuel level control valve malfunction occurs, avoid nose high attitudes, high power settings, and minimize longitudinal accelerations. This will allow fuel to gravity feed in sufficient quantities to sustain engine operation. Closely monitor fuel level to ensure sufficient fuel exists for engine operation. Minimal time should be spent in a climb and a stair-step maneuver is recommended. Should fuel in the feed tank become low, execute a nose low, low power descent. This will allow fuel in cells 4 through 7 to feed through cells 3 to cells 1 and 2. Although the fuel will gravity feed at 15,000 pounds/hour under optimum conditions, recommend reduced power settings if practical. Gravity feed capability is directly dependent on aircraft attitude. For instance, during a 17 unit AOA final approach, half of the fuel in cell 3 and all of the fuel in cells 4 through 7 (5400 pounds aircraft thru 68-494, or 5000 pounds aircraft 68-496 and up) will not gravity feed. In normal cruise approximately 1/2 of the fuel in cells 3 through 7 will not gravity feed. Continually check feed tanks, avoid high altitudes and low power settings.

1. Feed tank fuel – CHECK
2. If any transfer pump or transfer pump control circuit breaker (D3, E3, F3, G3, D4, E4, F4, G4, No. 2 panel) popped — DO NOT RESET
 Resetting the circuit breakers may result in arcing and cause a fire hazard.
3. Fuel valve power circuit breaker (H1, No. 2 Panel) — FULL
 This ensures that the fuel level control valves in cells 1 and 2 are open.
4. Air refuel switch – EXTEND (320 knots maximum) (monitor fuel gage)
 This ensures hydraulic fuel transfer pump operation. External and internal wing fuel will not transfer with the air refuel switch in EXTEND.
5. Fuel tank fuel – MONITOR
 If gravity feeding, perform a nose low reduced power (low AOA) descent, if practical. This will allow cells 4 through 7 to gravity feed through cell 3 to cells 1 and 2.

When feed tank full –

6. Air refuel switch – CLOSE
 When feed tanks are refilled by the hydraulic transfer pumps, closing the air refuel door will allow external and internal wing fuel to feed.

7. Fuel valve power circuit breaker — IN (H1, No. 2 panel) (if fuselage fuel is still not transferring repeat steps 3 thru 7.)
8. Engines — OPERATE AT MINIMUM POWER FOR SAFE FLIGHT
9. Land as soon as practical
10. Avoid nose high flight conditions
11. Delay slowing to landing configuration to avoid long, high AOA final approach.
12. Fly 17 unit AOA approach

REVERSE FUEL TRANSFER

Reverse fuel transfer from the fuselage tanks to the external tanks can occur if there is a path for the fuel to flow between the fuselage and external tanks. A failed open fuel valve provides such a path. Generally, reverse fuel transfer is not noticeable until the external tanks are depressurized. Reverse fuel transfer occurs most often when the air refuel switch is placed to EXTEND but can also occur when the tanks are depressurized at touchdown or during auto transfer. Reverse fuel transfer is indicated by a rapid decrease in the tape and counter. If reverse fuel transfer occurs on the ground, shut down both engines as soon as practical to prevent flameout while taxiing.

1. Air refuel switch – RETRACT
2. External transfer switch – OFF
3. Refuel selection – INT ONLY
4. Fuel boost pump circuit breakers – PULL
 Aircraft thru 68-494
 a. LH fuel boost pump cont (J4, No. 2 panel)
 b. RH fuel boost pump cont (D2, No. 2 panel)
 Aircraft 68-495 and up
 a. LH fuel boost pump cont (J4, No. 2 panel)

If reverse transfer continues and internal fuel critical –

5. External tanks – JETTISON

FUSELAGE FUEL LEAK

If fuel fumes are detected, an abnormal decrease in fuel quantity is noted, or fuel is observed emitting from the fuselage, a fuselage fuel cell or fuel line rupture may exist. A fuel line rupture may be indicated by abnormal engine operation. In this case, shutting down the engine and turning its master switch OFF may stop the leak. If the engines operate normally or shutting down the suspect engine does not stop the leak, it should be treated as a fuel cell rupture. The greatest danger is a catastrophic fire resulting from ignition of the leaking fuel. If a fire did not occur immediately, it probably will not erupt unless conditions are changed so as to provide an ignition source. The pilot must avoid the normal reaction to land immediately. Instead, he must do as little as possible to change conditions while attempting to stop the leak. All actions should be deliberate and unhurried. Any descent should be gradual to avoid excessive pitch angles, to maintain the recommended airspeed, and to avoid collapsing unpressurized external tanks. Landing should not be attempted until fuselage fuel is reduced below 1800 pounds (fuselage fuel in cells 1 and 2) since lowering the gear will open the auxiliary air doors and cause reverse air flow through the engine bay which may provide an ignition source.
1. Air refuel switch - EXTEND (monitor fuel gage)
 Placing the air refuel switch to EXTEND deactivates the automatic fuel transfer feature, depressurizes all tanks and prevents transfer of internal wing and external tank fuel to the fuselage cells. Fuel transfer is not recommended unless required to prevent flameout due to cell fuel exhaustion. Wing fuel can be dumped normally with the air refuel switch in EXTEND. Placing the internal wing dump switch in DUMP repressurizes the internal wing tanks.

2. Maintain 350 knots
 This airspeed is optimum for ventilation of fuel tank and engine bay areas.

If an engine operates abnormally –

3. Generator bad engine – OFF
 Turn the generator OFF before placing the throttle OFF to prevent the bus tie from opening when an underspeed occurs as rpm decreases.

4. Throttle bad engine – OFF

5. Master switch bad engine – OFF

If engines operate normally or fuel leak continues –

3. Follow Smoke and Fumes procedure, this section (if required).

4. Use minimum bank and pitch angles for maneuvering.
 Maintaining near straight and level flight may reduce fuel spillage.

5. Do not use afterburner.

6. Reduce fuselage fuel below 1800 pounds (if practical).
 The danger of fire or explosion is reduced if all fuselage fuel is in cells 1 and 2.

7. External stores – Jettison (if required)

8. Make straight-in approach

SINGLE GENERATOR FAILURE

Single generator failure is indicated by illumination of the appropriate GEN OUT light. One generator (with bus tie relay closed) is sufficient to support the entire electrical load.

1. Affected engine instruments – CHECK
 A GEN OUT light may be the first indication of engine failure or CSD failure due to oil starvation. Refer to Oil System Failure, this section.

If night or IMC –

2. Generator switch – OFF

3. Oil pressure – MONITOR

4. Land as soon as practical

Day VMC only –

2. Stab aug switches – OFF IF RIGHT GENERATOR FAILED
 If failure of the right generator occurs, disengage the stab aug switches before cycling the generator. This prevents possible control surface transients. After TO 1F–4E–62, turning the left generator switch off may cause loss of DMAS alignment. Without stab aug, do not exceed 300 knots below 10,000 feet and avoid abrupt control movements.

3. Generator switch – CYCLE
 Cycle generator switch from ON to OFF to ON. If the generator fault has been corrected, the generator will be reconnected to the system and the LH/RH GEN OUT light will go out.

4. Stab aug switches – ON

If generator light still on –

2. Generator switch – OFF

3. Oil pressure – MONITOR
 CSD failure due to oil starvation may be the source of trouble and subsequent engine failure could result.

4. Land as soon as practical.

DOUBLE GENERATOR FAILURE

In most cases the generators will not fail simultaneously; it is more likely that one generator will fail, followed by the failure of the other generator. The GEN OUT lights do not illuminate for a double generator failure. However, double generator failure is accompanied by illumination of the DC BUS light. With a double generator failure, boost pump pressure and primary altitude reference systems will be lost. Front cockpit emergency attitude indicator power is supplied from the battery. When power is interrupted, the SPC will disengage. The STATIC CORR OFF light will not illuminate. The CADC switch should be turned off, the teledyne panel checked and, after power is restored, the CADC should be reset. If, while performing this procedure, a single generator comes on line, proceed to the Single Generator Failure procedure or the appropriate Bus Tie Open procedure.
With a double generator failure, rudder feel force will automatically revert from 11.5 to 2.6 pounds per degree of rudder deflection. As a result, rudder pedal force at high airspeeds becomes extremely sensitive, and excessive structural loads can be imposed on the aircraft if full rudder deflection is commanded.

1. Reference system selector – STBY
2. Unessential electrical switches – OFF
3. Stab aug switches – OFF
 Without stab aug, do not exceed 300 knots below 10,000 feet and avoid abrupt control movements.
4. Generator switches – CYCLE

If generators come on line –

5. Stab aug switches – ON

If generators do not come on the line –

5. (WSO) Electrical test receptacle plug 3P325 – ENSURE PLUG SEATED FLUSH, KNUREALED LOCK RING SECURE, CAP TIGHT.
 It is possible to trip both generators off the line if the electrical test receptacle plug 3P325 under the right canopy will is loose. The plug uses a knurled (twist clockwise to lock) lock ring which should not be confused with the chain equipped threaded cap.
6. Generator switches – CYCLE

If generators come on line –

7. Stab aug switches – ON

If generators are still inoperative –

7. Generator switch(es) – OFF
8. Land as soon as possible
 Battery life cannot be accurately predicted.
 Considering the difficulty in recovering the aircraft with complete electrical failure, you should land as soon as possible. With battery power, landing gear and slat flags operation are normal. If the slats flags are OUT AND DOWN and the battery fails, the slats will remain out and the flaps will retract to a low-drag trail position.
9. Make a fully configured 17 unit AOA approach
10. Make approach-end arrestment if possible.
11. Anticipate auto-acceleration
 The bellmouths and auxiliary air doors are inoperative. Refer to Auxiliary Air Door Malfunction (Gear Down) this section.

BUS TIE OPEN

An illuminated BUS TIE OPEN light is an indication that the right and left generator bus systems are no longer interconnected. If the left generator is disconnected and the bus tie relay is open, the left main ac buses will be lost. If the right generator is disconnected and the bus tie relay is open, the right main ac buses are lost. Refer to Emergency Power Distribution charts to determine affected systems. During night or IMC, consideration should be given to the possible loss of additional electrical power due to cycling a generator.

BUS TIE OPEN (BOTH GENERATORS OPERATING – NIGHT OR IMC)

1. Land as soon as practical

BUS TIE OPEN (BOTH GENERATORS OPERATING – DAY VMC)

In day VMC conditions, a BUS TIE OPEN light with both generators operating should not necessitate aborting the mission if the bus tie can be closed by cycling a generator switch. The bus tie cannot be closed if the DC BUS light is on and the main 28 vdc bus is inoperative. In most cases the bus tie can be closed by cycling a generator. If the bus tie remains open after generator cycling, an out of phase/frequency condition exists. Therefore, it is possible to create an undesirable difference frequency oscillation which may impair performance of systems utilizing inputs derived from both generators. In day VMC conditions, the irregularities may be eliminated by turning a generator off and thus supplying the same same phase/frequency to all systems. The utility power dc circuit breaker must be IN before the bus tie relay can be closed. If the circuit breaker is out and will not reset, cycling and/or turning off a generator will not close the relay and in fact will cause interruption of power to the applicable buses as long as the generator switch is off. In view of the above, proceed as follows:

1. Utility power dc circuit breaker – IN/CYCLE IF IN (D6, No. 2 panel)

If circuit breaker will not reset –

2. Land as soon as practical

If circuit breaker in or resets and BUS TIE OPEN light still on –

2. Stab aug switches – OFF
 The stab aug switches should be disengaged before cycling the generator switch to prevent possible control surface transients. Without stab aug, do not exceed 300 knots below 10,000 feet and avoid abrupt control movements.
3. Right generator – CYCLE

Change 10 3-26A
If BUS TIE OPEN light goes out –

4. Stab aug switches – ON

If BUS TIE OPEN light stays on –

4. Right generator – OFF

If BUS TIE OPEN light still on –

5. Right generator – ON
6. Stab aug switches – ON
7. Land as soon as practical
EMERGENCY POWER DISTRIBUTION

INOPERATIVE EQUIPMENT

CRITICAL ITEMS
- LH Gen Out-Bus Tie Open
- LANDING LT
- NAVIGATION & WEAPON DELIVERY SYSTEM (NWDS)
- AN/ARW-77
- ANTI-COLLISION LT (ONE FILAMENT)
- CORDS HTR
- COROTUS PWR
- ECM PODS (STA 2, 4, & 5)
- EQPT COOLING
- FUSLG LTS
- FRONT CPT CONSOLE LTS
- FRONT CPT RED INSTR FLOODS (DIM)
- LH COMM
- LH 28V TRANSFORMER
- LH FUEL BOOST PUMP
- LH MISSILE FIRING
- LH MISSILE POWER
- LH TRANSFORMER RECTIFIER

NON-CRITICAL ITEMS
- ADF
- AILERON FEEL TRIM
- AILERON RUDDER INTERCONNECT
- ALR-46 WARNING SYS
- ALTITUDE ENCODER
- ANTICOLLISION LT (ONE FILAMENT)
- APR-36/37
- APJ
- APG-80 A/J A/I FF
- ARMAMENT PWR
- AUTOPILOT
- AUX RECEIVER
- CADC
- COARDS PWR
- ECM PODS (STA 6 & 8)
- FORM LTS
- FRONT CPT INSTR LTS
- GUNSIGHT CAMERA
- NO. 4 ELEC FUEL XFR PUMP
- NOSE GUN
- RADAR
- RADAR SCOPE CAMERA
- RED CONSOLE FLIGHTS MED
- RH FUEL BOOST PUMP
- RH MISSILE PWR
- SEAT ADJUST
- SPIKE GUIDANCE
- TARGET DESIGNATOR
- UTILITY LT
- UTILITY PWR AC
- WING AND TAIL LT DIM
- WRADS PWR

INOPERATIVE EQUIPMENT

CRITICAL ITEMS
- RH Gen Out-Bus Tie Open
- IFR RCPT FLOOD LTS
- LH FUEL BOOST PUMP
- ENGINE RAMPS CONT
- NO. 6 ELEC FUEL XFR PUMP
- OXYGEN GAGE
- RADAR ALTIMETER
- RIGHT ENGINE RAMPS CONT
- RH 28V TRANSFORMER
- RWR PWR
- RH FUEL BOOST PUMP
- RH TRANSFORMER RECTIFIER
- SCAC
- STAB AUG
- TAXI LT
- WINDSHIELD TEMP SENSING
- WING & TAIL LT BRT

NON-CRITICAL ITEMS
- ADF
- AILERON FEEL TRIM
- AILERON RUDDER INTERCONNECT
- ALR-46 WARNING SYS
- ALTITUDE ENCODER
- ANTICOLLISION LT (ONE FILAMENT)
- APR-36/37
- APJ
- APG-80 A/J A/I FF
- ARMAMENT PWR
- AUTOPILOT
- AUX RECEIVER
- CADC
- COARDS PWR
- ECM PODS (STA 6 & 8)
- FORM LTS
- FRONT CPT INSTR LTS
- GUNSIGHT CAMERA

Figure 3-7 (Sheet 1 of 2)
EMERGENCY POWER DISTRIBUTION

INOPERATIVE EQUIPMENT

Main 28 Volt DC Bus Out

CRITICAL ITEMS

- ANTI-SKID
- BUS TIE RELAY (BUS TIE OPEN LT ON)
- CKPT HEAT & VENT
- INTERNAL WING FUEL PUMP
- LANDING & TAXI LTS
- NOSE WHEEL STEERING
- TACAN
- TURN & SLIP INDICATOR (REAR CKPT)

NON-CRITICAL ITEMS

- ACM IN RANGE AND SHOOT LIGHTS
- ACOUSTICAL SCORER (A/A 37U-33)
- AFLF
- AGTS (A/A 37U-33)
- AILERON RUDGER INTERCONNECT
- AIRBORNE VIDEO TAPE RECORDER (AVTR
- ALE-40
- ALTIMETER VIBRATOR
- APR-36/37
- APX-80 A/A IFF
- ARRESTING-hook (UP OPERATION)
- AUX AIR DUCTS
- AUX RECEIVER
- COMBAT DOCUMENTATION CAMERAS
- CONVENTIONAL WEAPONS RELEASE & FIRE
- CORSO PWR
- ECM CONTROL
- ECM PODS & DESTRUCT (STA 2, 4, 5, 6 & 8)

Engine Variable Bellmouth
- EQPT COOLING CONTROL
- FUSLG. ANTI-COLLISION & TAIL LTS
- GUNSHIELD CAMERA
- LCOSS
- LH FUEL BOOST PUMP
- MISSILE FIRING
- NAV COMPUTER
- NO. 4 ELEC FUEL XFR PUMP
- NO. 5 ELEC FUEL XFR PUMP
- NOSE GUN
- PNEUMATIC COMPRESSOR
- RADAR
- RADAR ALTIMETER
- RAIN REMOVAL
- RADAR SCOPE CAMERA

Operative Equipment

Battery Power Only

CRITICAL ITEMS

- AOA INDICATOR
- EGT INDICATORS
- EJECTION LIGHT
- EMERITUDE IND
- ENGINE FIRE & OVERHEAT DETECTOR
- EXT FUEL XFR (CONTROL)

NON-CRITICAL ITEMS

- ALL STONES EMER JETT
- AOA AURAL TONE GENERATOR
- FUEL CONTROL
- FUEL VALVE POWER
- FRONT CKPT INSTR FLOODS BRT

Test Function Inoperative

1. AIRCRAFT 86-288 THRU 68-538
2. AIRCRAFT 87-220 AND UP
3. AFTER TO 1F-4-581
4. AFTER TO 1F-4-613 OR TO 1F-4-1138
5. AIRCRAFT 68-264 THRU 68-489
6. AIRCRAFT 68-264 THRU 72-1497
7. AIRCRAFT 68-452 AND UP
8. AFTER TO 1F-4-626
9. AFTER TO 1F-4-111
10. BEFORE TO 1F-4-611
11. AIRCRAFT 86-288 THRU 68-484
12. AIRCRAFT 88-484 AND UP
13. BEFORE TO 1F-4-626
14. AFTER TO 1F-4-1262

15. BEFORE TO 1F-4-1233, THE COMM FUNCTION SELECTOR MUST BE IN T/R, T/R/G, OR G
 AND MANUAL FREQUENCY SELECTION IS REQUIRED.

16. BEFORE TO 1F-4-1233, UHF OPERATES NORMALLY.

17. AIRCRAFT 69-7679 AND UP
18. BEFORE TO 1F-4-1414
19. AFTER TO 1F-4-1414
20. BEFORE TO 1F-4-1320
21. AFTER TO 1F-4-1320
22. AFTER TO 1F-4-1252, WITH CARA RADAR ALTIMETER
 NOT AFFECTED.
23. BEFORE TO 1F-4-671
24. AFTER TO 1F-4-671
25. BEFORE TO 1F-4-1355
26. AFTER TO 1F-4-1355

Figure 3-7 (Sheet 2 of 2)
LEFT GENERATOR OUT – BUS TIE OPEN

1. Left engine instruments – CHECK
 A GEN OUT light may be the first indication of engine failure or CSD failure due to oil starvation. Refer to Oil System Failure, this section.

2. Left generator switch – CYCLE
 If the LH GEN OUT and BUS TIE OPEN lights stay on, the left main ac buses will be lost.

3. NCSC INS knob – ATTD (DMAS)
 If INU fault indicated (NWDS)

4. Refer to NWDS Failures (ACU, AIU, CDU, or INU) this section.

If LH GEN OUT and BUS TIE OPEN lights stay on –

4. Left generator switch – OFF
5. Unessential electrical equipment – OFF
 Turn off all electrical equipment not essential to flight. Refer to Emergency Power Distribution chart.
6. Left engine oil pressure – MONITOR
 CSD failure due to oil starvation may be the source of trouble and subsequent engine failure.
7. Land as soon as practical
8. Make a fully configured 17 unit AOA approach
9. Consider an approach-end arrestment
 Anti-skid is inoperative
10. Avoid heavy braking

RIGHT GENERATOR OUT – BUS TIE OPEN

A right generator out and bus tie open will cause random flight control inputs which can be as much as 15° rudder, 11° spoiler, and 1\frac{1}{2}° stabilator deflection. Actuation of the emergency quick release lever or disengagement of stab aug switches and ARI will not correct this but it may take as long as 5 seconds before all surfaces return to neutral. This delay may be interpreted as additional uncommanded input. Any momentary re-engagement will again cause another random input. The amount, rate of deflection, and rate of correction is neither predictable nor repeatable.

1. Emergency quick release lever – HOLD PRESS
2. Right engine instruments – CHECK
 A GEN OUT light may be the first indication of engine failure or CSD failure due to oil starvation. Refer to Oil System Failure, this section.
3. Stab aug switches – OFF
 The stab aug switches should be disengaged before cycling the generator switch to prevent possible control surface transients. Without stab aug, do not exceed 300 knots below 10,000 feet and avoid abrupt control movements.

4. ARI circuit breaker (front cockpit) – PULL
 With the ARI circuit breaker pulled, anti-skid is inoperative.
5. Emergency quick release lever – RELEASE
6. Right generator switch – CYCLE
 If the RH GEN OUT and BUS TIE OPEN lights stay on, the right main ac bus will be lost.

IF RH GEN OUT LIGHT or BUS TIE OPEN light out -

7. Stab aug switches – ON
8. ARI circuit breaker – RESET

IF RH GEN OUT LIGHT and BUS TIE OPEN lights stay on –

7. Right generator switch – OFF
8. Right engine oil pressure – MONITOR
 CSD failure due to oil starvation may be the source of trouble and subsequent engine failure.
9. Land as soon as practical
10. Make a fully configured 17 unit AOA approach
11. Consider approach-end arrestment
12. Avoid heavy braking
 With the ARI circuit breaker pulled, anti-skid is inoperative.

DC BUS LIGHT ON

The DC BUS light comes on when the main dc bus and essential dc bus are disconnected. If the light should come on, check operation of equipment powered by each bus to determine its condition. Operate the speed brakes to check the main dc bus. Failure of the essential dc bus will cause the gear indicators to barberpole when the battery bypass switch is placed ON.

1. Speedbrake – CYCLE (to check the main 28 vdc bus)
2. Battery bypass – ON (to check the essential 28 vdc bus)
 Failure of the essential dc bus will cause the gear and flap indicators to barberpole when the battery bypass switch is placed to ON.
3. Battery bypass – OFF

IN DAY VMC CONDITIONS –

1. Stab aug switches – OFF
2. Reference system selector – STBY
3. Generator switches – CYCLE SIMULTANEOUSLY
NOTE

- After TO 1F-4E-626, cycling the left generator may cause loss of DMS alignment.
- After TO 1F-4E-671, cycling the left generator may cause ACU failure which will result in the CDU displaying the ACU FAILURE INU BACKUP NAV DISPLAY. The INU will remain aligned and navigating unless the INU NWDS power switch is cycled. Refer to TO 1F-4E-34-1-1-3.

4. Stab aug switches — ON
5. Equipment operated by both dc buses — RECHECK

IF DAY VMC AND DC BUS LIGHT REMAINS ON OR NIGHT IMC

Both buses operating — DC BUS light on —

1. Land as soon as practical

Main DC bus failed — DC BUS light on (speed brake inop) —

1. Land as soon as practical
2. Make a fully configured 17 unit AOA approach
3. Make an approach and arrestment, if possible
 Anti-skid and nose wheel steering are inoperative. Refer to approach and arrestment this section.
4. Avoid heavy braking

ESSENTIAL BUS FAILED (WITH OPERATIVE BATTERY) —
DC BUS LIGHT ON —

1. Land as soon as possible
2. Anticipate battery failure
 If unable to land immediately, battery life may be extended by placing the battery bypass switch to ON until in a position to make a safe approach and landing. Those items listed in the emergency power distribution chart under Operative Equipment Battery Power Only are powered by the essential dc bus and battery bus and will be lost while the battery bypass is ON or when the battery fails.
3. Configure as soon as practical
 Battery life cannot be accurately predicted. Without battery power, normal landing gear and slats/flaps controls are inoperative. If the slats/flaps are out and down and the battery fails, the slats will remain out and flaps will retract to a low drag tail position. Other critical items which will be lost include: intercom, AOA system, gear and flaps/flaps indicators, EGT indicators, UHF radio and the internal and external wing transfer.
4. Fly computed fully configured on speed +10 knots approach

ESSENTIAL BUS FAILED (BATTERY FAILED) — DC BUS LIGHT ON —

1. Land as soon as possible

2. Make a straight in, no slat/flap approach
 Refer to no slats/flaps landing this section.

CAUTION

Without battery power, normal slats/flaps extension is not available. The emergency slats/flaps extension system should be activated only if the utility system fails. If the emergency system is activated with normal utility hydraulic pressure available, there is a high probability of losing utility hydraulic system pressure.

3. If gear not down and locked — BLOW DOWN
 Refer to landing gear emergency lowering (utility hydraulic or electric system failed) this section.
4. Fly approach at the airspeed shown below:

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>APPRCH SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>34,000</td>
<td>166</td>
</tr>
<tr>
<td>36,000</td>
<td>168</td>
</tr>
<tr>
<td>36,000</td>
<td>170</td>
</tr>
<tr>
<td>37,000</td>
<td>172</td>
</tr>
<tr>
<td>38,000</td>
<td>174</td>
</tr>
<tr>
<td>39,000</td>
<td>176</td>
</tr>
<tr>
<td>40,000</td>
<td>178</td>
</tr>
<tr>
<td>41,000</td>
<td>180</td>
</tr>
<tr>
<td>42,000</td>
<td>182</td>
</tr>
<tr>
<td>43,000</td>
<td>184</td>
</tr>
<tr>
<td>44,000</td>
<td>186</td>
</tr>
<tr>
<td>45,000</td>
<td>188</td>
</tr>
<tr>
<td>46,000</td>
<td>190</td>
</tr>
</tbody>
</table>

FLIGHT CONTROL MALFUNCTION

Upon initial detection of any abnormal flight control movement, immediately press the emergency quick release lever and hold in order to determine if the stab aug or APCS was causing the abnormality.

1. Emergency quick release lever — HOLD PRESSED
 It may take up to 8 seconds for anailer or rudder input to cease after depressing the emergency quick release lever or turning the appropriate roll or yaw stab aug off.
2. APCS — DO NOT ENGAGE
3. Stab aug switches — AS REQUIRED
4. Emergency quick release lever — RELEASE

NOTE

With pitch aug disengaged or inoperative, do not exceed 300 knots below 10,000 feet, and avoid abrupt control movements.
3. Maintain attitude and airspeed during steps 4 through 8.
4. NCSC INS knob – NAV (Check ALIGN light ON and NAV light OFF).
5. KC keyboard – PERFORM POWER CHECKS.
6. When ALIGN light goes out and NAV light comes ON in 1 to 2 minutes, resume aircraft maneuvers.
7. Reference system selector switch – PRIM.

NOTE
The NSC NAV light will remain on as a reminder that only INS attitude information is valid. Check position and perform position update as needed before loran lock-on.

8. Monitor DDI NO SIG and NEW STA lights go out to indicate loran lock-on (loran lock-on is necessary for a complete gyro compass alignment).
9. NCSC mode knob – LRN INT.
10. When NAV light goes out, IMU has full gyro compass alignment.

NWDS FAILURES (ACU, AIU, CDU, OR INU)

NWDS provides backup modes for limited operation should NWDS components fail. Figure 3–9A lists component failures and backup NWDS control and display capabilities.

NOTE
All radio navigation functions (VOR/ILS and TACAN) are available with a NWDS failure by selecting the desired mode on the NFSP MODE knob.

To verify heading information -
1. Reference system selector – STBY
 Verify that the aircraft heading will sync to the correct mag heading. This may be cross checked against the NWDS by selecting the Emergency Data screen, and comparing the instrument reading with mag heading displayed on the CDU.

Verify type of failure -
1. LRU status display – SELECT (SFT, cursor on top)
 a. If D94 display present, refer to ACU Failure.
 b. If AIU failed, refer to AIU Failure.
 c. If CDU blank or BIT light on, refer to CDU Failure.
 d. If INU failed, refer to INU Failure.

ACU FAILURE

If the ACU fails, the INU takes over bus control for the NWDS system and continues to supply attitude, heading, and navigation data to the flight director system, and allows display of the ACU Failure/INU Backup Nav Display (refer to TO 1F–4E–34–1–1–3). The CDU will display destination 94 and current latitude, longitude, and groundspeed. The value of the winds and groundspeed is the current values that the INU is calculating.

The CDU issues commands to the INU to recall destination latitudes and longitudes. The WSO can recall destination (96 thru 99) for review. The CDU will replace the cursor in the destination window and allow the WSO to enter the destination number. The CDU will then display the latitude and longitude for the entered destination number.

The CDU is capable of issuing a Fly—To command to the INU. Pressing the Fly—To key followed by the ENT key will command the INU to Fly—to the displayed destination.

The WSO may recall destinations 95 thru 99 and modify the latitude and/or longitude by pressing L1 for latitude or R2 for longitude. Pressing the ENT key after entering the values will send the new value to the INU for storage. The WSO may leave destinations 95 thru 99 unmodified and input a new destination by modifying the destination number to 100. Latitude and longitude for destination 100 can then be entered. This allows the WSO to repeatedly input destinations as the flight progresses without losing the special destination data (95 thru 99).

If backup NAV display present -
1. D100 – SELECT (R1, 100, ENT)
2. Latitude/longitude – MODIFY (as required) (L1 or R2, modify data, ENT)
3. Fly to D100 (Fly ENT)
4. Recovery destination – SELECT (R1, D95–99, ENT, R2, ENT)
5. Refer to backup navigation capabilities (figure 3–9A)

AIU FAILURE

The AIU provides the interface between the NWDS and the other aircraft equipment. With an AIU failure communication of NWDS data to the other aircraft equipment is lost, and therefore all NWDS aided functions are lost. NWDS will continue to operate and to navigate, however CMPT APR flight director functions are not available (limited navigation steering functions are available). All radio navigation functions (VOR/ILS and TACAN) are available by selecting the desired mode on the NFSP MODE knob. It may be possible to recover a failed AIU by reconfiguring the AIU.

1. LRU status display – SELECT (SFT, cursor on top)
 With an AIU failure indicated (MC in upper right corner of the CDU), pressing the shift cursor on top sequence will display the LRU status screen.
2. Verify AIU failed – REVERSE HIGHLIGHTED X FOLLOWING AIU LEGEND
3. Configuration screen selected (SFT, PMD, L1, F2, F4) – TOGGLE PAVE SPIKE (L2, L2)
4. Verify AIU fault cleared (SFT, cursor on top) – NONREVERSE HIGHLIGHTED X FOLLOWING AIU LEGEND
If fault not cleared –
5. Refer to backup navigation capabilities (figure 3–9).
CDU FAILURE

If a CDU failure occurs after system initialization, additional NWDS CDU data display or entry/modification is not possible. If NWDS is navigating, the preplanned mission data flight plan can be flown as entered without further modification. If deviations from the available NWDS flight plan are required, the CMPTR NAV function of the flight director will not be available. Placing the N/PSP MODE knob to CMPTR APR will, after 5 seconds, sequence the NWDS to destination 96 and provide approach and landing steering to destination 96 on the ADI. All other NWDS functions will continue normally.

When steering required to D96 –

1. Navigation function selector switch — CMPTR APR

INU FAILURE

If the INU fails, with the Reference System Selector Switch in PRIM, NWDS will automatically supply AN/AJB-7 attitude data to the ADI. Since the ADI is now using AN/AJB-7 attitude data, no additional attitude accuracy will be gained by changing Reference System Selector Switch position. But placing the switch to STBY is required to obtain reliable heading information.

NOTE

- NWDS operating with the NWDS power switch in the NWDS position will navigate using the Dead Reckoning (DR) mode as an INU failure backup. DR mode can also be selected by placing the CDU Mode Select Switch to the DR position.

- A Backup Navigation mode advisory will occur each time the INU is placed into an alignment mode. This does not indicate failure of the system.

The Dead Reckoning (DR) mode navigation function is a backup to the inertial navigation capability following an INU failure and will not run concurrent with the INU navigation functions. In the DR navigation modes, the ACU uses TAS from the SCAVC, heading from the AN/AJB-7 and attitude from the INU (if available) or fixed values of zero degrees pitch and zero degrees roll (if the INU has failed) to perform navigation computations. Last valid winds or WSO entered winds are used to compute groundspeed.

In DR navigation, emergency data is used whenever it is entered. DR navigation will compute present position based on the last available valid data until the operator manually enters true airspeed, wind, altitude, magnetic variation and/or heading via the Emergency Data Display. NWDS does a data reasonableness check on the data entered by the WSO, and if the data fails to check, it is displayed in reverse video.

NOTE

In DR navigation, position updates may be accomplished if required.

EMERGENCY DATA DISPLAY

The Emergency Data Display is selected from the Navigation Menu Display by pressing L3. (Refer to TO 1F-4E-34-1-1-3.) The data displayed consists of the following:

a. Altitude
b. True Airspeed
c. Wind Direction/Velocity
d. Magnetic Heading
e. Magnetic Variation

A window in front of each data entry will display C (for calculated value) or E (for WSO entered emergency value) indicating the source of the data displayed.

If the INU is faulted and the aircrew wants to have it back as an attitude system, they may complete an inflight alignment. The INU will then be good for attitude only. The DR Navigation mode will continue to process position. See INU Inflight Alignment.

If INU fault verified (reverse highlighted X) –

1. Inflight alignment — INITIATE (if required)
2. Emergency Data Display — SELECT (SFT, PMD, L3)
3. Manual data — INPUT (as required)

If not verified as an INU failure –

4. Assume NWDS failure and leave power switch in INU/NWDS to retain attitude

INU INFLIGHT ALIGNMENT

If it is necessary to perform an inflight alignment to provide attitude information, proceed as follows:

1. Reference system selector knob — STBY
2. Power switch — NWDS FOR 5 SECONDS
3. Aircraft straight and level
4. Power switch — INU/NWDS
 Maintain straight and level attitude for 15 seconds. Perform additional inflight alignments as required.
5. Reference system selector — PRIM

NWDS SYSTEM ADVISORY MESSAGES

An abbreviated listing of NWDS advisory messages, their cause, and the operator action associated with each message are contained in figure 3-98.

CANOPY DAMAGE/LOSS

If a canopy is damaged or lost, especially as the result of a bird strike or other external factor, consider the following in determining the proper course of action: aircraft control, terrain avoidance, ejection seat damage, possibility of an uncommanded ejection, and impaired intercom/radio communications. If feasible, slow to 250 knots and lower the ejection seats to reduce windblast and
improve communications. If applicable, refer to Landing From The Rear Cockpit With Pilot Disabled. It is imperative that WSO experience/abilities be considered before a back seat landing is attempted. After landing, do not open canopy until the ejection seats have been verified safe by egress personnel.

CONTROLLABILITY CHECK

During any inflight emergency, except utility hydraulic and engine failure, when structural damage or any other failure is known or suspected that may adversely affect aircraft handling characteristics, a controllability check should be performed as follows:

1. Proceed to a safe altitude (minimum 5000 feet AGL).
2. Reduce gross weight to minimum practical.
3. Landing gear — DOWN
4. Slats flaps — OUT AND DOWN
 (without structural damage)
 — NORMAL AND SLATS OVER-RIDE SWITCH IN
 (with structural damage)
5. Slow aircraft to determine the airspeed that produces acceptable approach and landing handling characteristics, no slower than 17 units AOA.

NOTE

- For aircraft with asymmetrical load, airspeed should be no slower than that at which full aileron trim will maintain wings level.
- With an asymmetric load near 17,000 feet—pounds (1,500 pounds on station 1 or 2,500 pounds on 2 or 8), landing with a cross-wind component over 10 knots from opposite the heavy wing is not recommended.
- Arresting gear limitations and field conditions must be considered.

If adequate control is not available due to asymmetric load -

6. Asymmetric load — JETTISON (refer to Jettison Chart)

If adequate control is available -

6. Maintain landing configuration and make straight—in approach.
7. Enroute to final approach, fly no slower than 230 knots with gear down and flaps up; or 200 knots with gear down and slats out flaps down.
8. Fly final approach no slower than minimum control airspeed determined during controllability check.
9. Do not flare during landing.
HSI NWDS BACKUP NAVIGATION CAPABILITIES (WITH NWDS COMPONENT FAILURES)

NOTE

NWDS COMPONENT FAILURES DO NOT AFFECT VOR/ILS/TACAN EQUIPMENT OPERATION IN TERMS OF THE NAVIGATION CAPABILITIES OF THE HSI.

<table>
<thead>
<tr>
<th>NWDS DRIVEN HSI CAPABILITIES</th>
<th>ACU FAILURE</th>
<th>INU FAILURE</th>
<th>AIU FAILURE</th>
<th>CDU OR DTU FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEARING POINTER (2, FIGURE 1-15)</td>
<td>FULL CAPABILITY</td>
<td>FULL CAPABILITY BASED ON AN/AJB-7</td>
<td>FULL CAPABILITY</td>
<td>ALL HSI CAPABILITY RETAINED</td>
</tr>
<tr>
<td>HEADING MARKER (6, FIGURE 1-16)</td>
<td>FULL CAPABILITY</td>
<td>FROM AN/AJB-7</td>
<td>FULL CAPABILITY</td>
<td></td>
</tr>
<tr>
<td>MODE LIGHT (TGT)</td>
<td>LOSE FUNCTION</td>
<td>FULL CAPABILITY</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
<tr>
<td>COURSE DEVIATION INDICATOR</td>
<td>LOSE FUNCTION</td>
<td>FULL CAPABILITY BASED ON AN/AJB-7</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
<tr>
<td>RANGE INDICATOR</td>
<td>FULL CAPABILITY</td>
<td>LOSE FUNCTION</td>
<td>FULL CAPABILITY</td>
<td></td>
</tr>
<tr>
<td>TO-FROM INDICATOR</td>
<td>FULL CAPABILITY</td>
<td>LOSE FUNCTION</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
<tr>
<td>COURSE SET KNOB</td>
<td>FULL CAPABILITY</td>
<td>LOSE FUNCTION</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
<tr>
<td>DISTANCE SHUTTER</td>
<td>LOSE FUNCTION</td>
<td>SHUTTERS CLOSE</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
</tbody>
</table>

1. PILOT CAN SET COURSE SET KNOB, BUT WILL ONLY BE USED FOR CMPTR NAV AND CMPTR APR.

Figure 3-9A (Sheet 1 of 2)
ADI NWDS BACKUP NAVIGATION CAPABILITIES (WITH NWDS COMPONENT FAILURES)

NOTE

NWDS COMPONENT FAILURES DO NOT AFFECT VOR/ILS/TACAN EQUIPMENT OPERATION IN TERMS OF THE NAVIGATION CAPABILITIES OF THE ADI.

<table>
<thead>
<tr>
<th>NWDS DRIVEN ADI CAPABILITIES</th>
<th>ACU FAILURE</th>
<th>INU FAILURE</th>
<th>AIU FAILURE</th>
<th>CDU OR DTU FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BANK STEERING BAR</td>
<td>LOSE ADI FUNCTIONS 1 THRU 5</td>
<td>RETAIN ADI FUNCTIONS 1 THRU 5</td>
<td>LOSE ADI FUNCTIONS 1 THRU 5</td>
<td>RETAIN FULL ADI FUNCTIONS</td>
</tr>
<tr>
<td>2. GLIDE SLOPE INDICATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. GLIDE SLOPE WARNING FLAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. ATTITUDE WARNING FLAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. PITCH STEERING BAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. ADI PITCH & ROLL</td>
<td>PITCH & ROLL UNAFFECTED</td>
<td>PITCH & ROLL DATA PROVIDED BY AN/AJB-7 (IF AVAILABLE)</td>
<td>PITCH & ROLL UNAFFECTED</td>
<td></td>
</tr>
</tbody>
</table>

BDHI NWDS BACKUP NAVIGATION CAPABILITIES (WITH NWDS COMPONENT FAILURES)

NOTE

NWDS COMPONENT FAILURES DO NOT AFFECT VOR/ILS/TACAN EQUIPMENT OPERATION IN TERMS OF THE NAVIGATION CAPABILITIES OF THE BDHI.

<table>
<thead>
<tr>
<th>NWDS DRIVEN BDHI CAPABILITIES</th>
<th>ACU FAILURE</th>
<th>INU FAILURE</th>
<th>AIU FAILURE</th>
<th>CDU OR DTU FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINTER NO. 1 (SINGLE BAR POINTER) (BEARING)</td>
<td>FULL CAPABILITY (DRIVEN BY INU)</td>
<td>FULL CAPABILITY BASED ON AN/AJB-7</td>
<td>FULL CAPABILITY (DRIVEN BY INU)</td>
<td>RETAIN FULL BDHI FUNCTIONS</td>
</tr>
<tr>
<td>HEADING</td>
<td>FULL CAPABILITY</td>
<td>BACKUP HDG FROM AN/AJB-7</td>
<td>FULL CAPABILITY</td>
<td></td>
</tr>
<tr>
<td>DISTANCE</td>
<td>FULL CAPABILITY</td>
<td>LOSE DIST FUNCTION</td>
<td>FULL CAPABILITY</td>
<td></td>
</tr>
<tr>
<td>POINTER NO. 2 (DOUBLE BAR POINTER) (BEARING OR DRIFT)</td>
<td>LOSE CAPABILITY</td>
<td>FULL CAPABILITY</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
<tr>
<td>1000 MILE FLAG</td>
<td>LOSE FUNCTION</td>
<td>LOSE FUNCTION</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
<tr>
<td>DISTANCE SHUTTERS</td>
<td>LOSE FUNCTION</td>
<td>SHUTTERS CLOSE</td>
<td>LOSE FUNCTION</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-9A (Sheet 2 of 2)
ADVISORY MESSAGES

The following messages are displayed on the advisory display when NWDS detects a fault:

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>CONDITION</th>
<th>OPERATION ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACU OVERTEMP</td>
<td>ACU OVERHEAT FAULT</td>
<td>CLEAR MESSAGE. ACU MAY FAIL. TURN NWDS OFF IF NOT ESSENTIAL FOR MISSION.</td>
</tr>
<tr>
<td>ACU POWER SUPPLY</td>
<td>ACU POWER SUPPLY FAULT</td>
<td>CLEAR MESSAGE. ACU MAY FAIL. TURN NWDS OFF IF NOT ESSENTIAL FOR MISSION.</td>
</tr>
<tr>
<td>ADI DATA</td>
<td>ADI STEERING DATA MAY BE VALID</td>
<td>CLEAR MESSAGE. ADI STEERING INDICATIONS MAY BE IN ERROR.</td>
</tr>
<tr>
<td>AHRS DATA</td>
<td>NOT IN DR MODE OR AHRS MAGNETIC HEADING IS INVALID</td>
<td>CLEAR MESSAGE. IF IN DR MODE, LAST GOOD MAGNETIC HEADING WILL BE USED UNTIL A NEW VALUE IS ENTERED ON THE EMERGENCY DATA SCREEN.</td>
</tr>
<tr>
<td>AIR DATA NO-GO</td>
<td>AIR DATA MAY BE INVALID</td>
<td>CLEAR MESSAGE. NWDS ALTITUDE, TAS, AND WINDS MAY BE IN ERROR.</td>
</tr>
<tr>
<td>AIU OVERTEMP</td>
<td>AIU TEMPERATURE TOO HIGH</td>
<td>CLEAR MESSAGE. AIU MAY FAIL. TURN NWDS OFF IF NOT ESSENTIAL FOR MISSION.</td>
</tr>
<tr>
<td>AIU POWER SUPPLY</td>
<td>ADVISORY - ANY OF THE THREE AIU POWER SUPPLIES HAVE FAILED. AIU MAY FAIL</td>
<td>CLEAR MESSAGE. AIU MAY FAIL. TURN NWDS OFF IF NOT ESSENTIAL FOR MISSION.</td>
</tr>
<tr>
<td>ANALOG DATA</td>
<td>ANALOG DATA INVALID</td>
<td>CLEAR MESSAGE. AN/JJB-7 DATA WILL BE USED ON THE ADI INSTEAD OF INS DATA.</td>
</tr>
<tr>
<td>BACKUP NAV MODE</td>
<td>INU NAVIGATION IS DEGRADED, AND NWDS HAS SWITCHED TO DR NAVIGATION MODE</td>
<td>CLEAR MESSAGE. IF ADVISORY CANNOT BE CLEARED, NWDS WEAPON IS NOT AVAILABLE.</td>
</tr>
<tr>
<td>BDHI DATA</td>
<td>BDHI DATA MAY BE INVALID</td>
<td>CLEAR MESSAGE. BDHI INDICATIONS MAY BE IN ERROR.</td>
</tr>
<tr>
<td>CDU OVERTEMP</td>
<td>CDU OVERTEMPERATURE</td>
<td>CLEAR MESSAGE. TURN OFF NWDS IF NOT ESSENTIAL FOR MISSION.</td>
</tr>
<tr>
<td>CI DATA</td>
<td>REAR COCKPIT COURSE INDICATOR INDICATIONS MAY BE INVALID</td>
<td>CLEAR MESSAGE. CI INDICATIONS FOR NWDS COMPUTER APPROACH MAY BE IN ERROR. SELECT BACKUP.</td>
</tr>
<tr>
<td>HSI DATA</td>
<td>HSI DATA MAY BE INVALID</td>
<td>CLEAR MESSAGE. HSI INDICATION MAY BE IN ERROR.</td>
</tr>
<tr>
<td>INJ ATT ONLY</td>
<td>INJ IS OUTPUTTING ATTITUDE DATA ONLY</td>
<td>CLEAR MESSAGE. NWDS IS OPERATING IN DR MODE. RESYNCHRONIZE COMPASS. NWDS WEAPON DELIVERY MODES UNAVAILABLE.</td>
</tr>
</tbody>
</table>
LANDING EMERGENCIES

EMERGENCY LANDING PATTERN

The emergency landing pattern is a pattern to be flown when engine thrust is available and an emergency exists or there is a malfunction which could result in an emergency. The primary objective of the pattern is to land the aircraft safely in the first attempt with least amount of risk. Because of the many variables involved, such as type of emergency, position and altitude in relation to the field, gross weight, fuel remaining, weather, populated areas, runway length, availability of arresting gear, etc., a standard pattern cannot be prescribed. Depending on the circumstances it might be desirable to utilize GCA, make a straight-in approach, enter the pattern from downwind or base leg, or make a 360° overhead pattern. Because of the various circumstances, the pilot's evaluation of all factors and his judgment will determine the type of landing pattern to be flown. However, there are some general guidelines which are applicable regardless of approach selected: Reduce gross weight to minimum practical. Prior to establishing the landing configuration, maintain a minimum maneuvering airspeed of 230 knots (250 knots, single engine). The pattern should be planned to avoid abrupt, steep or hard turns and large or abrupt power changes especially with a flight control malfunction or a hydraulic system failure. Circumstances permitting, a long straight-in final should be planned and the landing configuration established when on final. The air refuel switch should be placed to EXTEND prior to landing to depressurize the fuel tanks. Should the nature of the emergency or other factors dictate establishing the landing configuration prior to final, 230 knots - flaps up, or 200 knots - slats flaps OUT AND DOWN should be maintained until established on final. These airspeeds will provide a margin of safety for maneuvering flight. If the pattern must be entered on downwind, base or from an overhead pattern, the pattern should be expanded, the landing configuration established prior to final, and roll-out on final should be at least 2 - 3 miles out. A normal 2 - 3 glide slope should be flown. For most emergencies, final approach airspeeds are increased and AOA decreased to provide adequate aircraft handling characteristics.

FLAPS SLATS EMERGENCY LOWERING

CAUTION

The emergency slats flaps extension system should be activated only if the utility system fails. If the emergency system is activated with normal utility hydraulic pressure available, there is a high probability of losing utility hydraulic system pressure. With utility system pressure available and a known or suspected slats flaps malfunction, a no-slates flaps landing is recommended.

If normal slats flaps operation fails, slats flaps can be lowered pneumatically by executing the following steps:

1. Airspeed - BELOW 250 KNOTS
2. Slats flaps circuit breaker - PULL
3. Slats flaps emergency extension handle - PULL AFT

If front cockpit emergency slats flaps lowering fails, retain front cockpit handle in the aft position and utilize rear cockpit emergency slats flaps handle. Asymmetric flaps extension may occur when flaps are extended by the emergency method. This will result in a momentary roll which can be countered by normal application of aircraft controls. Leave emergency slats flaps extension handle in the full aft position. Returning handle to its normal position allows compressed air from the slats flaps down side of the actuating cylinders to be vented overboard.

4. Slats flaps position indicators - CHECK

Slats flaps extension with the emergency extension handle will place the slats out and the flaps down. The flaps will indicate DN as soon as extension starts; however, actual flap extension is a function of air loads and they will not be fully extended above about 230 knots. The slats will not operate automatically and will remain out regardless of airspeed. If the pneumatic system fails, the flaps may retract asymmetrically. This will result in a momentary roll which can be countered by normal application of aircraft controls.

LANDING WITH NO FLAPS/SLATS IN OR OUT

A straight-in approach is recommended. For all abnormal slats flaps configurations, on-speed AOA on final will provide satisfactory control, but noticable buffet will be present. If a no-slats flaps landing is a result of flap switch failure or split flaps on the downwind of an overhead pattern, expand the pattern and fly a minimum of 230 knots on the downwind. The slats will extend automatically in accordance with their AOA schedule if electrical and hydraulic power are available unless the slats override switch is placed to IN. The slats override switch should remain at NORM unless an asymmetric slat condition occurs. Refer to Final Approach Speeds chart, appendix A, for corresponding airspeeds for no-slats flaps approaches.

1. Slats flaps - NORM
 Failure of the flaps to extend may indicate a massive leak in the flaps down line. In this case, continued flight with the slats flaps switch OUT AND DOWN can cause utility hydraulic system failure.

2. Slats override switch - NORM (IN FOR ASYMMETRIC SLATS)

3. Fly on-speed AOA on final (17 units for abnormal slat configuration)
ENGINE FAILURE ON FINAL

At the first indication of engine failure, advance both throttles to maximum thrust, rather than trying to
determine which engine has failed. Any delay in applying
power will result in an excessive sink rate and/or airspeed
bleed-off. Accept a continued descent until level-off can be
smoothly effected. External store drag is negligible at low
airspeed and has little effect on performance. Gross weight
dictates the thrust required to continue the approach or
go-around. Very little yaw is induced by military thrust
on one engine. Afterburner thrust creates a slight yaw
which can be controlled with rudder. Normally the
approach can be continued to a single-engine landing.

1. THROTTLES - AFTERBURNER
2. Go around or follow Single-Engine Landing
 procedure, this section.

NOTE
If the left engine fails and the bus tie remains
open, afterburner ignition will not be available. If
afterburner thrust is required, afterburner
light-offs are generally obtainable through
turbojector by jam accelerating the right
engine at 90% rpm or above.

ENGINE FIRE/OVERHEAT ON FINAL

1. Land as soon as possible

If time permits –

2. Throttle good engine – AS REQUIRED
3. Throttle bad engine – IDLE
4. If warning light goes out, fire test button – PRESS
 All FIRE and OVERHT lights should come on.
 After TO 1F-4-1484 and TO 1F-4-1503, the
 voice warning FIRE — FIRE should also be heard.
 If any FIRE/OVERHT light does not come on,
 assume a burn-through condition in the cor-
 responding engine/aft fuselage. After TO 1F-
 4-1503, if a burn-through has occurred, the
 MASTER CAUTION light and teletight panel
 fault light (FIRE SYS) will come on.

If warning light on, detection system inoperative,
or fire confirmed –

5. Generator bad engine – OFF
6. Throttle bad engine – OFF
7. Master switch bad engine – OFF
8. Follow Single Engine Landing procedure, this
 section.

SINGLE-ENGINE LANDING

1. Reduce the airplane gross weight to minimum
 practical.
2. Inlet ramp on good engine – CHECK FULLY
 RETRACTED.
 If inlet ramp is in the extended position, the
 afterburner must be utilized to make a safe
 approach.

3. All unessential electrical equipment – OFF
4. Make a fully configured 17 unit AOA approach.

WARNING

- If the utility system on the operating engine
 fails, the flaps will retract to a low drag trail
 position. Refer to Utility Hydraulic and Engine
 Failure (With or Without Single PC Failure).

- If power control system fails on the operating
 engine, refer to Double Power Control System
 Failure.

NOTE

- If the left engine is shut down, and the bus tie
 is open, afterburner ignition on the right engine
 is not available. However, if afterburner thrust
 on the right engine is required, afterburner
 light-offs are generally obtainable through
 turbine touching by jam accelerating the right
 engine at 90% rpm or above.

- Utility hydraulic pressure may go to zero for
 10 - 15 seconds during landing gear extension
 with an engine shutdown. Aircraft handling
difficulties may be encountered if in other than
 wings level flight. Delay selection of slats flaps
 out and down until pressure recovers.

- As the rpm on a windmilling engine decreases,
 hydraulic pressure may drop below 1500 psi.
 Anticipate a master caution and CHK HYD
teleight if not previously illuminated. As the
 rpm continues to decrease, loss of associated
 power control unit and utility pump for the af-
 fected engine is imminent.

SINGLE ENGINE GO-AROUND

At the first indication that a go-around may be necessary,
advance the throttle of operating engine to maximum
thrust. Continue the approach until sufficient airspeed to
level off is attained. Begin a shallow angle climb and
retract the landing gear. Do not retract the slats flaps
below 230 knots.

SPLIT-FLAP/DEFLECTED RUDDER

An unusual roll occurring when the flaps are extended
may be due to a split-flap condition. A similar yaw/roll
will occur when the flaps are extended if the ARI signal
excitation circuit breaker (E9. No. 2 panel) is popped or a
fuse in the ARI amplifier is blown. In this case, when the
flaps reach the down position the rudder will deflect 10°.
The rudder deflection can be overcome by rudder pedal
pressure or alleviated by depressing the emergency quick
release lever, retracting the flaps or resetting the ARI
signal excitation circuit breaker, if popped. When a
split-flap condition or rudder deflection occurs or is suspected:

1. Emergency quick release lever – HOLD PRESSED
2. Immediately accelerate above 200 knots.
3. Slats flaps – NORM
 Retract slats flaps while maintaining positive aircraft control.
4. Emergency quick release lever – RELEASE (After flaps up)
5. ARI signal excitation circuit breaker – RESET (B59, No. 2 panel)
6. Follow No-Slats Flaps Landing procedure.
7. AFCS – DO NOT ENGAGE

CAUTION

After touchdown, use of excessive back stick to provide aerodynamic braking can result in dragging the stabilator due to increased stabilator effectiveness at the higher touchdown speed.

FLAP FAILURE

Inadvertent flap retraction caused by an electrical or hydraulic malfunction, when an normal approach AOA and with slats flaps OUT AND DOWN selected, can be expected to result in the following:

a. Immediate wing rocking due to asymmetric flap retraction.
 b. An immediate increase of 2 units AOA and lighter stick forces with a nose pitch up movement.
 c. Mild buffet within two seconds, increasing with time.
 d. Poor directional stability.
 e. Increase of sink rate to about 2,000 fpm.

For the above condition, afterburner should be selected in order to ensure aircraft control. Flap failures at lesser AOA do not result in as sudden or significant a change in flight characteristics and should be easily controlled.

LANDING WITH RAMP FAILURE

If both engines are operating, slats flaps OUT AND DOWN landings can be safely made with one inlet ramp fully extended. Reduce gross weight prior to landing. Normal thrust settings must be increased 1 to 2% rpm to maintain an on-speed approach. Afterburner may be required for a late go-around.

Both ramps extended –

1. Make a fully configured 17 unit AOA approach

LANDING WITH EXHAUST NOZZLE FAILURE

If one or both nozzles fail fully closed, consideration should be given to reducing gross weight to the minimum practical. If one nozzle fails fully closed, consider shutting down the affected engine upon landing due to increased thrust at idle power. If both nozzles fail fully closed, the right engine should be shut down on landing to keep critical items on line in case of BUS TIE OPEN. If only one nozzle fails to the open position, make a normal approach and landing. In the event both nozzles fail to the open position, the thrust available in MIL range will be approximately equal to the thrust available during single engine operation in MIL range and a fully configured 17 unit AOA approach should be made.

1. Reduce the airplane gross weight to minimum practical.
2. Shut down affected engine upon landing.

If both nozzles failed open –

3. Make a 17 unit AOA approach.

If both nozzles failed closed –

3. Shut down right engine upon landing.

LANDING WITH BOTH ENGINES INOPERATIVE

Landing with both engines inoperative will not be attempted unless escape from the aircraft is impossible.

LANDING WITH A BLOWN TIRE

The situation may occur when a landing with a blown tire must be made, or a tire may rupture during the landing ground roll or during a touch and go landing. If a rupture occurs during a touch and go, the procedures for Blown Tire During Takeoff will apply. A blown tire and high speed require immediate corrective action to keep the aircraft aligned with the runway, therefore:

LANDING WITH A KNOWN BLOWN TIRE

1. Anti-skid switch – OFF
 Turn the anti-skid switch OFF to prevent loss of braking on the good tire resulting from skid indications from the blown tire.
2. Plan to make an approach-end arrestment. Refer to Approach-End Arrestment Procedure, this section.

If an approach-end arrestment is not feasible—

3. Land on side of runway opposite blown tire.
4. Touchdown with weight on good tire.
5. Nose gear steering – ENGAGE
 Even a momentary release of nose gear steering may cause loss of control. Full forward stick will increase nose wheel traction and improve steering capability. If required, use aerodynamic steering and braking on the good tire to maintain directional control.
6. Drag chute – DEPLOY
7. Use opposite braking to stop.

CAUTION

Avoid braking on the wheel with the blown tire. Heavy braking could cause a flat spot on the wheel which could prevent further wheel rotation and make aircraft control more difficult.

8. Do not retract flaps.
 The wing flap seals may have been damaged by pieces of broken tire and retracting the wing flaps will increase the damage.

BLOWN TIRE DURING LANDING ROLLOUT

1. NOSE GEAR STEERING – ENGAGE
 Even a momentary release of nose gear steering may cause loss of control. Full forward stick will increase nosewheel traction and improve steering capability. If required, use aerodynamic steering and braking on the good tire to maintain directional control.
2. ANTI-SKID – OFF
3. HOOK - DOWN
4. Use opposite braking to stop.

CAUTION

• Avoid braking on the wheel with the blown tire. Heavy braking could cause a flat spot on the wheel which could prevent further wheel rotation and make aircraft control more difficult.

• If both main tires fail, directional control difficulties may not be apparent until the latter part of the landing roll.

5. Do not retract flaps.
 The wing flap seals may have been damaged by pieces of broken tire and retracting the wing flaps will increase damage.

LANDING WITH ANTI-SKID FAILURE

Landing with a known anti-skid failure requires no special technique except that braking during landing roll must be done with extreme caution to avoid skidding a tire. At high speed and particularly with wet or icy conditions, a wheel can be locked with light pedal pressure and very small pedal deflection. Apply very light pedal pressure initially and slowly increase pedal pressure as speed decreases. If a skid occurs or is suspected, fully relieve brake pressure momentarily to allow the locked wheel(s) to come back up to speed. Plan on using all the runway.

Differential braking cannot correct for swerving or fishtailing due to wheel skid. The aircraft tends to swerve away from the locked wheel requiring release of the brake you would instinctively apply.

An approach-end arrestment should be considered in light of existing environmental factors such as runway condition, crosswind, and arrestment cable location. If the ANTI-SKID INOPERATIVE light illuminates:

1. ARI circuit breaker (Left Subpanel) and anti-skid circuit breakers (A11, B10, B11, No. 3 panel) – CHECK 1
2. Anti-skid switch – CYCLE

If anti-skid is still inoperative –

3. Anti-skid switch – OFF
4. Consider approach-end arrestment. Refer to Approach-End Arrestment, this section
5. Avoid heavy braking

LANDING FROM THE REAR COCKPIT WITH PILOT DISABLED

If the combination of weather, landing facilities, aircrew experience and aircraft condition is less than ideal, consideration should be given to a controlled ejection.

A landing made from the rear seat when the pilot is incapacitated presents a number of problems. The problem areas are: slats flaps and gear lowering, directional control, braking, and engine shutdown. The landing gear and slats flaps can be lowered by the emergency method (blown down) from the aft cockpit. Assuming normal utility pressure, there is a possibility of rupturing the utility hydraulic reservoir when the gear and slats flaps are blown down. However, tests have shown that the probability of the reservoir rupturing when the gear is lowered is fairly remote. These same tests have shown the probability of the reservoir rupturing when the slats flaps are lowered is almost certain. Therefore, it would be advisable to land with flaps up, if practical. If the slats flaps are blown down, the resultant rupture of the utility hydraulic reservoir will make a landing without nosewheel steering or normal brakes necessary. Anti-skid
GEAR INDICATOR OK

If two or more gear up or partially extended –

5. Use Landing Gear Emergency Lowering procedure

If one gear still in wheelwell –

5. Landing gear handle – UP
6. Apply negative G
7. While under negative G, landing gear handle – DOWN
8. If gear still in wheelwell, refer to Landings Gear Malfunctions – Emergency Landings chart.

If one gear still partially extended –

5. Yaw aircraft and apply positive G.

LANDING GEAR EMERGENCY LOWERING
(UTILITY HYDRAULIC OR ELECTRICAL SYSTEM FAILED)

CAUTION

- Do not use this procedure if the landing gear is already down and locked and subsequent electrical or hydraulic failure occurs. In this circumstance, emergency gear lowering does not make the gear safer and, rarely, has caused a previously down and locked gear to become unsafe.

- If the landing gear is inadvertently extended in flight by emergency pneumatic pressure, they must be left in the extended position until post-flight servicing. If retraction in flight is attempted, rupture of the utility reservoir will probably occur with subsequent loss of the utility hydraulic system.

If normal landing gear operation fails, the landing gear can be lowered by the following procedures:

1. Landing gear circuit breaker – PULL
2. Landing gear handle – DOWN
3. Landing gear handle – HOLD FULL AFT
 Hold handle in full aft position until gear indicates down and locked, and then leave the landing gear handle in the full aft position. It is possible to actuate the landing gear emergency system by pulling the landing gear control handle aft while the handle is in any position from UP through DOWN. If the handle cannot be pulled aft while in the down position, slowly raise the handle while continuing to pull aft. Once the handle moves aft, hold the handle in the full aft position until the landing gear indicates down and locked; then continue to hold back pressure on the handle and return it to the full down position.

WARNING

All normal jettison circuits in the aircraft are disabled once the emergency landing gear control handle in the rear cockpit is pulled. Jettison may still be accomplished by holding the armament safety override button in while actuating the appropriate jettison switch.

If landing gear is still unsafe –

4. Front cockpit gear handle extended, pull rear cockpit gear handle.
5. Yaw aircraft to assist in locking main gear.
6. Bounce aircraft on main gear (during touch and go) to assist lowering/locking the nose gear.
 Due to increased stabilator effectiveness, a no-flap touch and go is recommended.

WARNING

AOA is approximately 1 unit higher than indicated during nose gear up approaches.

LANDING GEAR EMERGENCY RETRACTION

If the gear must be retracted after Landing Gear Emergency Lowering, use this procedure. If utility hydraulic system pressure is low, the gear may not retract or may only partially retract.

1. Emergency gear handle(s) – PUSH IN
 NOTE
 The rear cockpit spring-loaded locking plunger must be pushed UP before the rear handle can be reset.

2. Wait as long as practical (minimum 1 minute)
3. Landing gear handle – UP
4. Landing gear circuit breaker – RESET

CAUTION

The landing gear circuit breaker must not be reset until the emergency handle(s) is/are returned to normal, maintained in that position for a minimum of 1 minute, and then landing gear handle placed UP. Only then may the circuit breaker be safely reset.
LANDING GEAR MALFUNCTIONS - EMERGENCY LANDINGS

BEFORE ATTEMPTING LANDING, CONSIDER:
- ARRESTING GEAR LIMITATIONS
- CROSSWIND
- RUNWAY AND OVERTURN CONDITION
- AIRCRAFT CONFIGURATION
- AIRCREW EXPERIENCE
- TREAT UNSAFE GEAR AS RETRACTED

IF CONDITIONS NOT IDEAL - EJECT

BEFORE LANDING-
1. JETTISON ARMAMENT (CONSIDER RETAINING RACKS) - REFER TO JETTISON CHART
2. DUMP OR BURN EXCESS FUEL
3. RETAIN EMPTY EXTERNAL WING TANKS (DEPRESSURIZE)
4. JETTISON Q TANK - REFER TO JETTISON CHART
5. SHOULDER HARNESS - LOCK
6. SLOTS FLAPS - OUT AND DOWN
7. FLY COMPUTED ON SPEED + 10 KNOTS WITH FLAT APPROACH

LANDING NOT RECOMMENDED

- ATTEMPT TO RETRACT GEAR (NORMAL OR EMERGENCY)
 - REFER TO ALL GEAR UP
 - IF GEAR WILL NOT RETRACT--
 - GEAR - BLOW DOWN
 - IF STILL ONE MAIN - NO NOSE --
 - RECOMMEND EJECT

ARRESTMENT NOT RECOMMENDED

- REQUEST REMOVAL OF APPROACH- END/MIDFIELD ARRESTING GEAR CABLES
- LAND BEYOND APPROACH - END ARRESTING GEAR (IF INSTALLED)
- AOA INDICATOR 1 UNIT LOW
- DO NOT SHUT DOWN ENGINES UNTIL STopped
- DEPLOY CHUTE AFTER NOSE LOWERED

IF UTILITY HYDRAULIC PRESSURE NORMAL --
- RETRACT GEAR AND REFER TO ALL GEAR UP

IF GEAR IS NOT RETRACTED --
- REQUEST REMOVAL OF APPROACH - END/MIDFIELD ARRESTING GEAR CABLES
- LAND BEYOND APPROACH - END ARRESTING GEAR (IF INSTALLED)
- DO NOT SHUT DOWN ENGINES UNTIL STopped
- DEPLOY CHUTE AFTER NOSE LOWERED

ALL GEAR UP
- DEPLOY CHUTE AT TOUCHDOWN

WITH OR WITHOUT WING PYLONS
WITHOUT EXTERNAL WING TANKS

Figure 3-11 (Sheet 1 of 2)
LANDING GEAR MALFUNCTIONS - EMERGENCY LANDINGS

APPROACH END ARRESTMENT RECOMMENDED

ALL GEAR UP
WITH EXTERNAL WING TANKS

- DEPLOY CHUTE AT TOUCHDOWN
- IF ARRESTMENT NOT PRACTICAL -
 - DEPLOY CHUTE AT TOUCHDOWN

ONE MAIN NOSE DOWN

- IF UTILITY HYDRAULIC PRESSURE NORMAL -
 - RETRACT GEAR AND REFER TO ALL GEAR UP
- IF GEAR IS NOT RETRACTED -
 - DO NOT DEPLOY CHUTE (EXCEPT MISSED ENGAGEMENT)
- IF ARRESTMENT NOT PRACTICAL -
 - LAND OFF RUNWAY & OPPOSITE FAILED GEAR
 - DEPLOY CHUTE AT TOUCHDOWN
 - DO NOT SHUT DOWN ENGINES UNTIL STOPPED

STUB MAIN OR BOTH STUB MAIN - NOSE DOWN

- IF UTILITY HYDRAULIC PRESSURE NORMAL -
 - RETRACT GEAR AND REFER TO ALL GEAR UP
- IF GEAR IS NOT RETRACTED -
 - LAND OFF RUNWAY & OPPOSITE FAILED GEAR
 - DO NOT DEPLOY CHUTE (EXCEPT MISSED ENGAGEMENT)
- IF ARRESTMENT NOT PRACTICAL -
 - LAND OFF RUNWAY & OPPOSITE FAILED GEAR
 - DEPLOY CHUTE AT TOUCHDOWN
 - DO NOT SHUT DOWN ENGINES UNTIL STOPPED

NO MAIN - NOSE DOWN

- DEPLOY CHUTE AT TOUCHDOWN
- IF ARRESTMENT NOT PRACTICAL -
 - DEPLOY CHUTE AT TOUCHDOWN
 - DO NOT SHUT DOWN ENGINES UNTIL STOPPED

Figure 3-11 (Sheet 2 of 2)
5. Refer to Landing Gear Malfunctions—Emergency Landings chart.

AUXILIARY AIR DOOR MALFUNCTION (GEAR DOWN)

If the auxiliary air doors fail to open when the landing gear is lowered, there is a possibility that the engines may automatically accelerate up to 100% rpm. A utility hydraulic system failure or double generator failure will render the variable bypass bellmouth and auxiliary air doors inoperative. Operation of an engine with an open variable bypass bellmouth and closed auxiliary air door will allow engine compartment secondary air to recirculate to the engine compressor inlet. During low altitude or ground operation, the temperature of the recirculating air may be high enough to initiate T2 reset through normal detection by the compressor inlet temperature sensor. As T2 reset occurs, it increases the engine idle speed to maintain proper airflow and thrust under high temperature conditions, and can cause the idle speed to increase to 100% rpm. The auto-accelerated engine can be shut down by placing the throttle to OFF. If a false reset occurs while airborne, a near normal landing can be made by modulating the exhaust nozzles of the affected engine(s).

1. Auxiliary air door control circuit breakers – RESET (A2, A3, No. 3 panel)

If light(s) remain on –

AUTO-ACCELERATION OF ONE ENGINE

1. Throttle bad engine – IDLE
 Modulate throttle of good engine for desired thrust. The combined thrust of the auto-accelerated engine in idle, and the good engine in idle, will not be in excess of that required to make an optimum approach speed.
2. At touchdown, bad engine – SHUTDOWN

AUTO-ACCELERATION OF BOTH ENGINES

1. Throttle of either engine – IDLE
2. Modulate throttle of remaining engine for desired thrust.
3. Make a fully configured 17 unit AOA approach
4. Make an approach-end arrestment.
 Refer to approach-end arrestment procedure, this section.
5. At touchdown, right engine – SHUTDOWN

ARRESTING HOOK EMERGENCY OPERATION

If the arresting hook fails to extend when the control handle is placed in the down position, deenergize the solenoid selector valve by pulling the hook control circuit breaker in the rear cockpit. Pressure is then removed from the up side of the arresting hook actuator cylinder and the hook will extend. There are no provisions for arresting hook retraction in the event of a utility hydraulic failure or double generator failure.

1. Hook handle – DOWN
2. Arresting hook circuit breaker – PULL (A4, No. 3 panel)

APPROACH-END ARRESTMENT

Approach-end arrestments are considered practical whenever a malfunction or adverse weather conditions present a threat to directional control and there is suitable landing surface in front of the arrestment cable on which to land and lower the nose prior to cable contact. A touchdown point should be selected based on existing environmental factors such as arrestment cable location, runway condition, crosswind, nature of emergency and anticipated difficulty in high speed directional control. Consideration should also be given to the engaging speed limits to prevent structural failure to the arresting gear or the aircraft. See Field Arresting Gear Data (figure 3-14).

1. Notify tower.
2. Reduce gross weight to lowest practical.
3. Fly pattern as dictated by emergency.
4. Gear – DOWN
5. Hook – DOWN
6. Air refuel switch - EXTEND (monitor fuel gage)
7. Inertia reel – LOCKED
8. Plan for missed engagement
 Consider type of emergency, availability of back-up barriers, runway length, runway condition, fuel state, weather, and other pertinent factors.

WARNING

When directional control difficulties are anticipated, a landing should be planned as close to the cable as practical; however, no closer than 300 feet.

10. Throttles – IDLE
11. Stick – FORWARD
AIRSPEED INDICATOR FAILURE

1. Pitot heat - ON
2. Pitot heat circuit breaker - CHECK IN (D9, No. 3 panel)

<table>
<thead>
<tr>
<th>FLIGHT CONDITION</th>
<th>ANGLE-OF-ATTACK UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILITARY POWER CLimb</td>
<td></td>
</tr>
<tr>
<td>Drag Index = 0</td>
<td>Sea level: 5.0</td>
</tr>
<tr>
<td></td>
<td>combat ceiling: 9.5</td>
</tr>
<tr>
<td>Drag Index = 120</td>
<td>Sea level: 8.5</td>
</tr>
<tr>
<td></td>
<td>combat ceiling: 10.0</td>
</tr>
<tr>
<td>MAXIMUM POWER CLimb</td>
<td></td>
</tr>
<tr>
<td>All Drag Indexes</td>
<td>Sea level: 4.5</td>
</tr>
<tr>
<td></td>
<td>combat ceiling: 11.5</td>
</tr>
<tr>
<td>Cruise at Altitudes Below 20,000 FT.</td>
<td></td>
</tr>
<tr>
<td>(all gross weights)</td>
<td></td>
</tr>
<tr>
<td>Drag Index = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag Index = 130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruise at Optimum Altitude</td>
<td></td>
</tr>
<tr>
<td>Drag Index = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag Index = 130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance at Optimum Altitude</td>
<td></td>
</tr>
<tr>
<td>Drag Index = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag Index = 130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Descents (low to medium gross weight)</td>
<td></td>
</tr>
<tr>
<td>250 KNOTS, idle power</td>
<td></td>
</tr>
<tr>
<td>300 KNOTS, 80% rpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td></td>
</tr>
<tr>
<td>GCA Pattern (250 knots, gear up, slats flaps up)</td>
<td>9.0</td>
</tr>
<tr>
<td>Gear extension (250 knots)</td>
<td></td>
</tr>
<tr>
<td>Slats flaps extension (gear down, 200 knots)</td>
<td>11.5</td>
</tr>
<tr>
<td>Final "On Speed" approach (slats flaps any position, gear down)</td>
<td>19.2</td>
</tr>
<tr>
<td>Stall</td>
<td></td>
</tr>
<tr>
<td>Stall warning (pedal shaker)</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Notes
- Due to the basic difficulty of setting up flight conditions other than landing approach by reference to the angle of attack indicator, the information included in this table should be used only in an emergency situation.
- The ranges shown for angle of attack versus drag index, while not entirely linear, may be interpolated linearly for practical purposes.
- The flap extension and retraction airspeeds are sensed from the pitot static system.
- During landing approach, with unreliable airspeed indications above the 210-250 range, the flaps may not extend and the rudders may remain in the high gradient level.

WARNING
DURING LANDING APPROACH WITH FLAPS SELECTED AND INDICATED AIRSPEED FLUCTUATIONS ABOVE AND BELOW THE 210-244 RANGE, THE FLAPS MAY EXTEND OR RETRACT WITHOUT WARNING.

Figure 3-13
Field Arrestment Gear Data

| Aircraft Weight - Pounds | BAK-6 | BAK-9 | BAK-12/14 1200' R.O. | Dual BAK-12 | M-21 | MA-1/1A | E-28 | MAAS *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MAXIMUM ENGAGEMENT SPEED - KNOTS</td>
<td></td>
<td></td>
<td>GROUND SPEED</td>
<td>140</td>
<td>82</td>
</tr>
<tr>
<td>30,000</td>
<td>150</td>
<td>172</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>92</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>32,000</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>90</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>34,000</td>
<td>160</td>
<td>158</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>88</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>36,000</td>
<td>158</td>
<td>166</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>86</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>38,000</td>
<td>156</td>
<td>164</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>84</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>40,000</td>
<td>154</td>
<td>162</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>82</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>42,000</td>
<td>153</td>
<td>158</td>
<td>180</td>
<td>180</td>
<td>140</td>
<td>81</td>
<td>180</td>
<td>170</td>
</tr>
<tr>
<td>44,000</td>
<td>152</td>
<td>155</td>
<td>178</td>
<td>180</td>
<td>180</td>
<td>135</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>46,000</td>
<td>150</td>
<td>150</td>
<td>176</td>
<td>180</td>
<td>180</td>
<td>135</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>48,000</td>
<td>149</td>
<td>149</td>
<td>174</td>
<td>180</td>
<td>180</td>
<td>135</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>50,000</td>
<td>148</td>
<td>148</td>
<td>172</td>
<td>180</td>
<td>180</td>
<td>135</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>52,000</td>
<td>145</td>
<td>140</td>
<td>168</td>
<td>180</td>
<td>180</td>
<td>135</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>54,000</td>
<td>135</td>
<td>136</td>
<td>166</td>
<td>178</td>
<td>180</td>
<td>125</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>56,000</td>
<td>134</td>
<td>163</td>
<td>177</td>
<td>180</td>
<td>125</td>
<td>177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58,000</td>
<td>132</td>
<td>161</td>
<td>176</td>
<td>180</td>
<td>125</td>
<td>177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60,000</td>
<td>130</td>
<td>159</td>
<td>175</td>
<td>180</td>
<td>125</td>
<td>177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mobile Aircraft Arresting System

NOTE

Do not delay a request for arresting gear. Raising a BAK-12 device can require 7 1/2 seconds before it is fully up and locked. With a 3 second operator reaction time, the aircraft will travel 2200 feet at 125 knots before the gear is fully up and locked.

Figure 3-14

3-50 Change 6
<table>
<thead>
<tr>
<th>LIGHT</th>
<th>CAUSE</th>
<th>CORRECTIVE ACTION/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFCS ALT/GP DISENGAGED</td>
<td>ALTITUDE HOLD OR AUTOMATIC GLIDE PATH STEERING DISENGAGED</td>
<td>INFO ONLY</td>
</tr>
<tr>
<td>ALT ENCODER OUT</td>
<td>UNRELIABLE CR NO SIGNAL FROM ALT ENCODER</td>
<td>IF LIGHT STAYS ON: USE VOICE COMMUNICATIONS. IF LIGHT FLICKERS CONTINUOUSLY: PULL ABUS CB (HS, HS, NO. 1 PANEL)</td>
</tr>
<tr>
<td>R or L ANTI-ICE ON</td>
<td>NORMAL IF SWITCH IS ON</td>
<td>IF SWITCH OFF - REDUCE AIRSPEED. IF LIGHT GOES OUT - ACCELERATE AND DISREGARD LIGHT. IF LIGHT STAYS ON - REMAIN AT REDUCED SPEED</td>
</tr>
<tr>
<td>ANTI-SKID INOPERATIVE</td>
<td>ANTI-SKID HAS MALFUNCTIONED</td>
<td>CARRY OUT PC EMERGENCY PROCEDURE. DISREGARD MOMENTARY LIGHT</td>
</tr>
<tr>
<td>APU</td>
<td>PC-1 PRESS BELOW 1000 PSI</td>
<td>CARRY OUT PC EMERGENCY PROCEDURE IF NEITHER PC HAS FAILED. APU CONTROL CB (LS, NO. 1 PANEL) - PULL. LAND AS SOON AS PRACTICAL</td>
</tr>
<tr>
<td>AUTOPILOT DISENGAGE</td>
<td>AUTOPILOT IS NOT ENGAGED</td>
<td>INFO ONLY</td>
</tr>
<tr>
<td>AUTOPILOT PITCH TRIM</td>
<td>AUTOPILOT ENGAGED AND AUTOPILOT PITCH TRIM IS MALFUNCTIONING</td>
<td>STICK - GRASP FIRMLY. AUTOPILOT - DISENGAGE</td>
</tr>
<tr>
<td>R or L AUX AIR DOOR</td>
<td>DOORS OUT OF PHASE WITH GEAR HANDLE</td>
<td>CARRY OUT EMERGENCY PROCEDURES</td>
</tr>
<tr>
<td>BUS TIE OPEN</td>
<td>GEN ARE OUT OF FREQUENCY PHASE OR FAULTED CSD UNDERSPEED SWITCH</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>CABIN TURB OVERSPEED</td>
<td>TURBINE PRESSURE/TEMP TOO HIGH</td>
<td>REDUCE THRUST AND SPEED. IF LIGHT STAYS ON, EMER VENT KNOB - PULL</td>
</tr>
<tr>
<td>CANOPY UNLOCKED</td>
<td>CANOPY UNLOCKED</td>
<td>GROUND: REFER TO CANOPY MALFUNCTION PROCEDURE. INFLIGHT: COCKPIT PRESS-DUMP. REDUCE POWER AND AIRSPEED. COMMAND SELECTOR VALVE - VERTICAL IF REAR CANOPY UNSAFE. CANOPY HANDLE - DO NOT MOVE</td>
</tr>
<tr>
<td>CHECK FUEL FILTERS</td>
<td>FUEL FILTER(S) ARE CLOGGED</td>
<td>NOTE IN FORM 781</td>
</tr>
<tr>
<td>CHK HYD GAGES</td>
<td>PRESSURE BELOW 1500 ± 100 PSI IN PC-1, PC-2 SYS OR UTILITY SYS</td>
<td>CARRY OUT EMERGENCY PROCEDURES</td>
</tr>
<tr>
<td>DC BUS</td>
<td>MAIN 28VDC BUS DISCONNECTED FROM ESS 28VDC BUS BECAUSE OF LOW VOLTAGE ON 28VDC</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>DUCT TEMP HI</td>
<td>INLET TEMP ABOVE 121°C</td>
<td>REDUCE SPEED. MAINTAIN SUBSONIC CRUISE</td>
</tr>
<tr>
<td>L EXT FUEL</td>
<td>TANK EMPTY</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>R EXT FUEL</td>
<td>FLOW STOPPED</td>
<td>INTERMITTENT ILLUMINATION DURING TRANSFER IS NORMAL.</td>
</tr>
<tr>
<td>TANK EXTENDED</td>
<td>AIR REFUEL-EXTEND AND REFUEL SELECTION-ALL TANKS</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>FIRE OVERHEAT</td>
<td>EXCESSIVE TEMPERATURES IN ENGINE OF AFT COMPARTMENT</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>FIRE SYS</td>
<td>BURN-THROUGH OR DETECTION SYSTEM FAULT</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>FUEL LEVEL LOW</td>
<td>FUEL REMAINING: 1500 ± 200 POUNDS BLK 41 AND UP: 1500 ± 200 POUNDS</td>
<td>CHECK ALL FUEL TRANSFERED, FEED TY CHK AND FUEL LOW WARN CB (HS, NO. 2 PANEL) IN ESSENTIAL DC PWR AVAILABLE. IF ANY TANK TRANSFER CB Popped, REFER TO FUSLAGE FUEL FAULT TO TRANSFER</td>
</tr>
</tbody>
</table>

Figure 3-15 (Sheet 1 of 2)
<table>
<thead>
<tr>
<th>LIGHT</th>
<th>CAUSE</th>
<th>CORRECTIVE ACTION/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUEL INDICATOR ERR LEGEND FLASHERING</td>
<td>FUEL QUANTITY SYSTEM MALFUNCTION</td>
<td>ID CODE C, NO CORRECTIVE ACTION. COMPENSATOR FAULT ID CODES 1, 28 AND 90, COMPARE SECTOR AND COUNTER FOR FUEL LOCATION. CHECK FUEL LEVEL LOW LIGHT. RECORD ALL CODES IN AF FORM 781.</td>
</tr>
<tr>
<td>LH GEN OUT</td>
<td>GEN OFF THE LINE</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>RH GEN OUT</td>
<td></td>
<td>INCOMP ONLY</td>
</tr>
<tr>
<td>IFF</td>
<td>STEADY - MODE 4 ZEROIZED BLINKING - MODE 4 NOT RESPONDING TO INTERROGATION</td>
<td>STEADY - INFORMATION BLINKING - CHECK MODE 4 SELECTOR ON</td>
</tr>
<tr>
<td>IMU OUT</td>
<td>IMU FAILURE OR MALFUNCTION</td>
<td>REFERENCE SECTOR - STBY</td>
</tr>
<tr>
<td>NAV SYS OUT</td>
<td>INS MALFUNCTION (NON NWDS)</td>
<td>REFERENCE SYSTEM SELECTOR - STBY CARRY OUT EMERGENCY PROCEDURES (NWDS)</td>
</tr>
<tr>
<td>NAV MODE CAUTION</td>
<td>CAUTION CONDITION EXISTS</td>
<td>CHECK TELELIGHTS</td>
</tr>
<tr>
<td>NAV MODE STATUS</td>
<td>DMRC HAS AUTOMATICALLY DEGRADED OR UPGRADED NAVIGATION MODE</td>
<td>SELECT NCSC MODE CORRESPONDING TO ILLUMINATED NCSC STATUS LIGHT. CHECK PRESENT POSITION TO ENSURE LORAN DID NOT DISTORT PRESENT POSITION.</td>
</tr>
<tr>
<td>OXYGEN LOW</td>
<td>QUANTITY IS 1 LITER OR LESS</td>
<td>DESCEND TO SAFE ALTITUDE</td>
</tr>
<tr>
<td>PITCH AUG OFF</td>
<td>PITCH STAB AUG NOT ENGAGED</td>
<td>DO NOT EXCEED 300 KNOTS BELOW 10,000 FEET</td>
</tr>
<tr>
<td>RADAR CMI COOL OFF</td>
<td>EQUIPMENT COOLING TURBINE OFF</td>
<td>CARRY OUT EMERGENCY PROCEDURE</td>
</tr>
<tr>
<td>SLATS IN</td>
<td>SLAT OVERRIDE SWITCH AT IN POSITION</td>
<td>INFO ONLY</td>
</tr>
<tr>
<td>SPEED BRAKE OUT</td>
<td>SPEED BRAKES NOT CLOSED</td>
<td>INFO ONLY</td>
</tr>
</tbody>
</table>
| STATIC CORD OFF | SPC INOPERATIVE | ● CADC SWITCH - RESET CORR. IF LIGHT STAYS ON:
● CADC SWITCH - CORR OFF
● USE ALTITUDE LAG CHART |
| TANK 7 FUEL | LIGHT INOPERATIVE | LIGHTS ON TEST ONLY |
| WHEELS | BELOW APPROXIMATELY 230K-GAURDF | LOWER GEAR OR ACCELERATE ABOVE FLAP BLOW-UP SPEED |
| WINDSHIELD TEMP HIGH | ● WINDSHIELD OVERHEATED ILLUMINATED NORMAL AND NO ACTION ACQUIRED WITH
(1) BUS TIE OPEN-RIGHT GEN OUT
(2) INTERMITTENT AT HIGH MACH WITH RAIN REMOVAL OFF | ● RAIN REMOVE SWITCH-OFF IF LIGHT STAYS ON
● EMERGENCY VENT KNOB-PULL
● DESCENT BELOW 25,000 FEET |

Figure 3-15 (Sheet 2 of 2)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>System</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioning and Pressurization System</td>
<td>4-1</td>
</tr>
<tr>
<td>Anti-G Suit System</td>
<td>4-6</td>
</tr>
<tr>
<td>Speech Security Unit (KY-28)</td>
<td>4-6</td>
</tr>
<tr>
<td>Secure Speech System (KY-58)</td>
<td>4-8</td>
</tr>
<tr>
<td>Automatic Flight Control System (AN/ASA-32)</td>
<td>4-8A</td>
</tr>
<tr>
<td>Inertial Navigation and Attitude Heading Reference System</td>
<td>4-14</td>
</tr>
<tr>
<td>Attitude Reference System</td>
<td>4-15</td>
</tr>
<tr>
<td>Navigation Computer Set (AN/ASN-46A) (Before TO 1F-4E-626 and TO 1F-4E-671)</td>
<td>4-17</td>
</tr>
<tr>
<td>Navigation and Weapon Delivery System AN/ASQ-203 (After TO 1F-4E-671)</td>
<td>4-19</td>
</tr>
<tr>
<td>Air Refueling System</td>
<td>4-19</td>
</tr>
<tr>
<td>Miscellaneous Equipment</td>
<td>4-21</td>
</tr>
</tbody>
</table>

The following systems are not described in this manual but are listed for reference purposes together with the reference letter for the manual which contains the detailed description and operational application as follows:

A TO 1F-4E-34-1-1
B TO 1F-4E-34-1-1-1
C TO 1F-4E-34-1-1-2
D TO 1F-4E-34-1-1-3
E TO 1F-4E-25
F TO 1F-4C-34-1-2
G TO 1F-4C-34-1-1-2

AIR CONDITIONING AND PRESSURIZATION SYSTEM

Air conditioning in the aircraft is divided into two major systems, one for cockpit areas and one for electronic equipment cooling. The cockpit for both crew members are pressurized and supplied with conditioned air from the cockpit air conditioning system. The same air that pressurizes and heats the cockpit is used to keep the windshield free of fog, frost, rain and to purge the gun gases from the breech of the M61A1 nose gun. The equipment air conditioning system provides cooling air for the main radar package and communication-navigation-identification equipment. Both systems utilize high temperature, high pressure, 17th stage engine compressor bleed air from either or both engines.

AIR CONDITIONING

The cockpit air conditioning system on the right side of the forward fuselage (figure 4-1) consists of two air-to-air heat exchangers, ground ejector, an expansion turbine, pressure regulator and shutoff valve, mixing valves, and a temperature control which allows a selection of cockpit conditioning temperatures, defogging, rain removal, and ram air operations. High temperature, high pressure, engine compressor bleed air passes through the primary and secondary heat exchanger and is expanded (cooled) through the cooling turbine. After being mixed with hot compressor bleed air (as required by the temperature selection) it enters the cockpit through several manifolds, one near the front cockpit rudder pedals, one near the rear cockpit rudder pedals, one along the lower surface of each windshield side panel and one at the base of the flat optical panel of the windshield. Two eyeball type air nozzles are located just below the canopy sill on the right and left side of the rear cockpit.
COCKPIT AIR CONDITIONING

The cockpit air conditioning system operation can best be explained by referring to the cockpit temperature schedule (figure 4–2). The lower temperature range (refer to the curve labeled foot heat) produces temperatures from
−29°C to 38°C. These temperatures refer to the inlet air and not cockpit temperature; therefore, cockpit temperature will be determined by a combination of inlet air and environmental conditions. The low temperature curve is the governing schedule for all air entering the cockpit while in automatic temperature control with the defog-foot heat lever in the LOW range. A little air is always entering through the defog port and this air increases (while foot heat air decreases) as the lever is moved forward. Until a switch is made, both defog and foot heat air enter on the low temperature schedule. The switchover to the high temperature curve occurs at
Figure 4-1
WARNING

- Do not attempt to change pitch attitude of the aircraft from the rear cockpit in the AFCS mode. Since no force transducer is in the rear cockpit control stick, applying force will cause pitch trim to run up and down depending on pressure applied. If the pilot attempts to take control at that point, violent transients may be encountered.

- When selecting the AFCS mode, have hand on control stick to counteract any abrupt control movements in the event of an AFCS malfunction.

- Before DMAS, do not have the AFCS engaged when the bombing modes are being used. These modes use the AN/JJB-7 and transients introduced into the attitude input of the AFCS at pull-up could cause pitch and/or roll oscillations.

4. When altitude hold mode is desired, place altitude hold switch to ENGAGE.

On aircraft after TO 1F-4E-626

5. To engage the DMAS controlled computer autopilot steering mode, ensure that the following conditions are met:
 a. Destination data has been inserted in the DMAS for each route destination point (sequential point number thru magnetic variation).
 b. Keyer control STEER knob - AS DESIRED
 c. Navigation function selector panel mode selector knob - COMPT NAV
 d. Course selector panel CSE SEL switch - AS DESIRED
 e. Course selector panel NAV PT SEL switch - AS DESIRED
 f. Aircraft ground track is within ±22.5° of present destination inbound course.
 g. AFCS switch - ENGAGE
 h. CMPTR STEER switch - ENGAGE

6. To engage the DMAS computer coupled approach mode, ensure that the following conditions are met:
 a. The desired runway touchdown point coordinates and desired approach course have been inserted in the DMAS for the selected L destination.
 b. Keyer control steer display window shows the destination number for the destination selected as the FLY TO point.
 c. Keyer control STEER knob - NAV M or NAV A

 NOTE
 In the CMPTR APR mode, destination auto sequencing is inhibited.

d. Course selector panel CSE SEL switch - KYBD
e. Course selector panel NAV PT SEL switch - AS DESIRED
f. Establish aircraft within the computer coupled approach capture bounds.

g. Navigation function selector panel mode selector knob - CMPTR APR.
h. AFCS switch - ENGAGE (if desired)
i. AFCS CMPTR STEER switch - ENGAGE (if desired)
j. AFCS ALT/GP switch - ENGAGE (if desired)

GENERATOR SWITCHING

Power to the autopilot, air data computer, and the AJB-7 may be momentarily interrupted during the starting and stopping of the airplane engines or generators. When the right engine or generator is started with the left generator already on the line, the connection between the right and left main buses is momentarily opened to allow the right generator to come on the line. This momentary interruption of power will cause the autopilot to disengage. The stab aug switches are not solenoid held, and remain on without electrical power. The AFCS, AJB-7 and air data computer are not affected by starting or stopping the left engine or generator with the right generator on the line.

NOTE
If failure of the right generator occurs, disengage the stab aug switches prior to cycling the generator. This prevents the possible occurrence of control surface transients. Stab aug may be re-engaged with the right generator control switch retained OFF or stab aug may be re-engaged after the generator control switch has been returned to the ON position.

OPERATIONAL PRECAUTIONS

Roll Reversal

There is a possibility of a condition called roll reversal occurring when operating the automatic flight control system in the AFCS mode. This condition occurs infrequently and is apparent only when attempting small changes in bank angle. Roll reversal is associated with a small out-of-trim condition in the lateral channel, and is apparent as a slow rolling of the airplane in the opposite direction of the stick force. If, for instance, the airplane is out of trim laterally to the left when the AFCS mode is engaged, roll reversal may occur when right stick forces are applied. A roll reversal situation may be caused by operating the manual lateral trim button while in the AFCS mode, followed by small stick forces being applied opposite to the direction of the trim. There is a possibility of roll reversal occurring even if the airplane has been trimmed prior to engaging the AFCS mode, and the manual trim button has not been touched. This condition is caused by changes in airplane trim accompanying changed flight conditions. In view of the above, the following instructions should be observed:

1. Trim airplane in stability augmentation mode before engaging AFCS mode.
2. Do not operate manual lateral trim while the AFCS mode is engaged. If roll reversal is encountered due to change in flight condition, disengage roll, retrim, then reengage.
Pitch Oscillations

When using the altitude hold mode, the aircraft may experience pitch oscillations in the transonic regions due to fluctuations in the air data computer airspeed system. The nature of these oscillations vary from stick pumping to divergent pitch oscillations. It is recommended that if pitch oscillations occur at transonic speeds, the following corrective steps be attempted:

1. AFCS switch – DISENGAGE
2. Static pressure compensator switch – OFF
3. AFCS switch – ENGAGE
4. Engage altitude hold mode

If the oscillations persist after the above action, or if they are encountered at supersonic speeds:

1. Disengage altitude hold mode.

WARNING

Divergent pitch oscillations should not be allowed to develop. If any divergent pitch activity is noted, corrective action should be taken immediately.

INERTIAL NAVIGATION AND ATTITUDE-HEADING REFERENCE SYSTEM

The system consists of two separate gyro reference components and a navigation computer. The inertial navigation set AN/ASN-63 supplies the primary azimuth and attitude reference, and in addition supplies direction, velocity, and distance inputs to the navigation computer. The INS also supplies aircraft attitude, true heading, velocities, and height above sea level to the Weapons Release Computer Set (WRCS). The AN/AJB-7 is the standby attitude reference and in addition supplies information for LABS and LADD bombing maneuvers. The AN/AJB-7 is also used in conjunction with the WRCS. After TO 1F-4E-626, the inertial navigation set and the weapons release computer set are removed and replaced by the digital modular avionics system (DMAAS). The DMAAS is described more fully in TO 1F-4E-34-1-1-2. After TO 1F-4E-671, the inertial navigation set and the weapons release computer set are removed and replaced by the Navigation and Weapon Delivery System (NWDS). The NWDS is described more fully in TO 1F-4E-34-1-1-3.

INERTIAL NAVIGATION SET

Before TO 1F-4E-626 and TO 1F-4E-671, the inertial navigation set (INS) is a self-contained, fully automatic unit which uses a gyro stabilized (inertial) platform upon which are mounted three sensitive accelerometers. During alignment, the sensitive axes of the accelerometers are aligned through interaction of the accelerometers and gyros; one is aligned to the north—south axis, one to the east—west axis, and one to the vertical axis. With the platform stabilized in pitch and roll by gyros, and oriented to true north, the accelerometers sense acceleration in any direction. This acceleration is integrated by a computer to produce velocity (ground speed), course, and distance traveled. The AN/ASN-63 contains circuitry to correct for apparent precession, based on the latitude of the INS position. The AN/ASN-63 provides navigation and attitude information to various aircraft systems, and in addition provides output signals to the WRCS, Lead Computing Optical Sight System and Radar.

After TO 1F-4E-626, the INS supplies true heading and vertical acceleration to the fire control ACM computer.

After TO 1F-4E-671, the INU supplies true heading and vertical acceleration to the fire control ACM computer.

Inertial Navigation System Out Lights

The INERTIAL NAV SYS OUT lights, on the front cockpit right subpanel, and on the rear cockpit main instrument panel, illuminate when the INS is in OFF, or a malfunction has occurred. If the set is operating normally, the lights extinguish when the power control knob is placed to the STBY position.

Inertial Navigation Control Panel (Before TO 1F-4E-671)

The inertial navigation control panel provides the controls for operating the inertial navigation set. The controls include a power control knob with positions of OFF, STBY, ALIGN and NAV; and an align mode switch with positions of HDG MEM and GYRO COMP. The mode selector knob controls system operation. The STBY position applies power to bring the inertial platform up to operating temperature as indicated by the illumination of the amber HEAT light. The HEAT light goes out when the unit reaches operating temperature. The ALIGN position is selected for stabilization of the platform and alignment to true north. The sequence of alignment is indicated by the green ALIGN light. The NAV position is selected after the align phase is completed (as noted by the green ALIGN light flashing) and is the normal operating position for the inertial navigation set. The align mode switch determines the method of alignment. The Gyro Comp align is the most accurate means of aligning the system. The HDG MEM
alignment is used for aircraft on alert or under possible scramble situations. Heading information obtained from a previous gyrocompass alignment is maintained in the system after the set is turned off.

ALIGNMENT PROCEDURES

Before TO 1F-4E-671, during the align sequence of the inertial navigation set, the compass system is automatically in the compass mode and the horizontal situation indicator and bearing distance heading indicator compass cards read magnetic heading directly from the flux valve. ADI azimuth information is not usable. If the wings are folded, the flux valve reading is not accurate and a greater magnetic variation is required to realize a variation synchronization on the navigation computer control panel. The reason is that in the wings folded position condition, the flux valve which is in the left wing, is oriented about 60° from its proper position. If the magnetic variation of the local area is not used, gyrocompass alignment takes longer to complete. Before aligning the inertial navigation set, place the navigation computer function selector knob to STBY, the position update switch to NORMAL, the variation counter to the local magnetic variation, and the position counter to the local latitude and longitude.

After TO 1F-4E-671, for INS alignment procedures on NWDS equipped aircraft refer to TO 1F-4E-84-1-1-3.

Gyrocompass Alignment

The gyrocompass mode of alignment is the most accurate means of alignment, with a 3 nautical miles of error per hour of circular error probability (CEP). However, it requires a longer period of time to accomplish than the other modes. To gyrocompass align the system, place the align mode switch to GYRO COMP and then the power
control knob to STBY. The amber HEAT light then illuminates. The cold start feature of the system enables the gyro to spin during standby and heat the system more evenly, therefore obtaining greater system accuracy. Coarse alignment is accomplished during the heating cycle. The time required for the system to reach operating temperature (160°F) is determined by the ambient temperature. The system warms up at the rate of at least 20°F per minute. When the HEAT light goes out, place the power control knob to ALIGN. There is a heat delay in the computer of 110 seconds after the system reaches operating temperature, and the HEAT light extinguishes after this time delay has elapsed. Gyrocompass alignment cannot be accomplished until the HEAT light has extinguished. If the HEAT light illuminates again during the align phase, continue with the aligning, but make an entry in the AFTO Form 751. Completion of Best Available True Heading Alignment (BATH) alignment is indicated by illumination of the green align light. This light comes on after 75 seconds. When the align light illuminates gyrocompass alignment has commenced. The time for completion of the gyrocompass alignment cycle varies due to the error present after BATH alignment. When the axis of the platform reaches within 10 arc minutes (1/8°) of true north, a flasher circuit delay energizes to ensure the system maintains alignment. The duration of the delay is 50 seconds and the align light does not flash indicating completion of gyrocompass alignment until the delay has elapsed. The system should be left in the ALIGN mode 2 minutes for greater system accuracy. The power control knob is then placed to NAV for system operation and the align light goes out. The heat or align light is not functional in the NAV mode. On aircraft after TO 1F-4E-626, refer to TO 1F-4E-34-1-1-2 for DMAS gyrocompass alignment.

Best Available True Heading Alignment

If operational considerations dictate, the time required to align the INS can be reduced, with a corresponding reduction in INS operational accuracy, by performing a Best Available True Heading (BATH) alignment. A normal gyrocompass alignment is accomplished up to a steady green ALIGN light. With the ALIGN light on steady, instead of waiting for the light to flash, place the power control knob to NAV. Since the set was not allowed to complete gyrocompass alignment (precise alignment with true north) accuracy of the INS outputs is reduced. The degree of inaccuracy cannot be predicted; however, a 5 1/2 nautical mile per hour circular error probability can normally be expected, but greater inaccuracies are not uncommon.

NOTE

A BATH alignment should not be used when the aircraft is in a hangar, near any large metal objects (power cars, etc.), or when the wings are not spread and locked. Gyrocompass alignment should be used whenever the aircraft magnetic heading signal is unreliable.

Heading Memory Alignment

Heading memory alignment is used when minimum alignment time is required and provides a 5 1/2 nautical mile per hour circular error probability. Prior to heading memory alignment, a gyrocompass alignment must have been performed through the flashing of the ALIGN light indicating that the system is aligned. The power control knob must be left in ALIGN until after placing the align mode switch to HGD MEM. The power control knob is then placed to OFF or STBY. From this time until the completion of the heading memory alignment, the aircraft must not be moved. When the unit is shut down in the heading memory mode, the platform retains the true north information obtained from the above procedure. To align the unit by the heading memory method, the align mode switch is in the EDG MEM position. The power control knob is placed to align mode until the align light flashes and then to NAV. After the power control knob is in NAV, place the align mode switch to GYRO COMP (guard down). If time permits, the system may be placed in the STBY mode until the heat light is extinguished, and then to ALIGN for greater system accuracy. On aircraft after TO 1F-4E-626, refer to TO 1F-4E-34-1-1-2 for DMAS heading memory alignment.

Inflight Alignment Procedure

Refer to Section III, this manual.

ATTITUDE REFERENCE SYSTEM

The AN/AJB-7 is a two gyro all-attitude reference platform which supplies standby azimuth information to the attitude director indicator, the horizontal situation indicator, and the bearing distance heading indicator. Additionally, the AN/AJB-7 supplies standby attitude information to the attitude director indicator. It also provides a standby attitude horizon for the front and rear cockpit radar indicators. The rear cockpit attitude indicator, the autopilot, and the bombing computer receive attitude information from the AN/AJB-7 at all times. After TO 1F-4E-626, when data received from the IMU is determined to be invalid, the AN/AJB-7 attitude reference bombing computer set may be selected to supply pitch, roll, and magnetic heading signals to the DMAS by placing the STBY-PRIM switch to STBY. These signals provide secondary attitude and heading information to the DMAS and flight instruments.

After TO 1F-4E-671, if data from the INU is determined to be invalid NWDS automatically switches to AN/AJB-7 magnetic heading, and sets pitch and roll equal to zero for use by NWDS in its navigation and weapon release calculations. The NWDS will then supply the AN/AJB-7 pitch and roll data to the flight instruments with the STBY-PRIM switch still in PRIM.

Compass Controller

The compass controller provides the controls and indicator necessary for proper operation of the azimuth system. The mode selector knob initiates the proper relay switching in the compass adapter compensator to select the operating modes (compass, DG, and slaved). The SYNC position of the mode selector knob, spring-loaded to return to the SLAVED position, is used for fast synchronization of the compass flux valve and the azimuth reference system. The degree of synchronization is indicated by the sync.
indicator meter. The set heading control knob, spring-loaded to return to the center or zero position, manually adjusts the azimuth setting of the ADI, HSI and BDHI. When operating the compass system using the AJB-7 directional gyro (STBY selected on the reference system selector switch and DG on the mode switch), corrections for gyro precession are required to maintain system accuracy. Compensation is provided by the hemisphere switch (N-S) and the latitude control when they are set to the local hemisphere and latitude respectively.

REFERENCE SYSTEM SELECTOR SWITCH

The reference system selector switch on the ADI provides selection between the inertial navigation set and the AN/AJB-7 displacement gyroscope as the source of attitude information. The following inputs are provided by the inertial navigation set when the reference system selector switch is in PRIM, or by the AN/AJB-7 when the switch is in STBY.

a. Azimuth and attitude information to the attitude director indicator.

b. Azimuth information to the horizontal situation indicator.

c. Azimuth information to the bearing distance heading indicator (rear cockpit).

d. Attitude information to the fire control system.

NOTE

Primary (inertial) information is not available unless the selector switch on the inertial navigator control panel is in the NAV position.

When switching from STBY to PRIM or vice versa, attitude information appears almost immediately but may be accompanied by some unusual gyrations of the attitude director indicator. This phenomenon is a simultaneous large gyration about all three axes after which normal attitude reference is displayed. Whether or not this occurs is determined by which side of the AJB-7 is uppermost during the initial erection. Accurate heading information may not be immediately available when switching between PRIM and STBY, if the aircraft is in a turn having a turn rate of more than 15° per minute. In this condition, the fast synchronization feature of the compass is cut out. This is done to prevent erroneous heading errors resulting from turning errors which are generated in the flux gate compass. Switching between PRIM and STBY under the preceding conditions will result in random erroneous heading information. To correct this situation, the aircraft must be flown straight and level (rate of turn less than 15° per minute) for approximately 20 seconds and then manually synchronized by placing the compass controller mode switch to the SYNC position.

NOTE

The pilot may fast erect the AN/AJB-7 gyro platform by selecting the FAST ERRECT position on the gyro switch. This applies an electrical cage signal to the gyro cageing mechanisms. As the cageing signal is applied, the aircraft should be in level, non-accelerating flight. The switch must not be held in FAST ERRECT for more than 60 seconds or damage to the gyro may result. FAST ERRECT should not be used to correct a heading error unless the preceding procedures have failed to correct the error.

OPERATING MODES

Compass Mode

The compass mode is considered an emergency mode. When the reference systems are not usable because of malfunctions, the compass mode provides a source of magnetic heading information to other aircraft systems. However, the interlock with the APCS mode of operation of the automatic flight control system is automatically opened in the compass mode to prevent erratic magnetic heading signals from being applied to the autopilot. Also, the attitude director indicator azimuth indications should not be used since it is still connected to the malfunctioning reference system. To place the attitude reference system in the compass mode proceed as follows:

1. Mode switch on the compass controller – C O M P

DG Mode

The DG mode is used in north and south latitudes greater than 70° and in areas where the earth’s magnetic field is appreciably distorted. When the DG mode is initially selected, the magnetic heading of the aircraft must be set into the system with the set heading control on the compass controller. The system then uses this reference for subsequent heading indications. Apparent drift compensating voltages are inserted by use of the hemisphere switch (N-S) and latitude control on the compass system controller when operating with the reference system selector switch in the STBY (AN/AJB-7) position. However, when operating with the reference system selector switch in the PRIM (inertial) position, the latitude control knob must be set at zero, as a heading error is induced in the system if the control knob is set at any other value. To place the reference system in the DG mode proceed as follows:

1. Mode switch on compass controller – DG

2. Hemisphere switch – LOCAL HEMISPHERE

3. Latitude control knob – ZERO (with reference system selector switch in PRIM) – LOCAL LATITUDE (with reference system selector switch in STBY)

4. Aircraft magnetic heading – SET

 Set aircraft magnetic heading on the HSI, using the set heading knob.

5. Readjust the latitude control knob for each 2° change in latitude, if operating the reference system selector in STBY.

Slaved Mode

The slaved mode is the mode ordinarily used under normal conditions. In the slaved mode, the azimuth system is primarily controlled by signals from the compass transmitter (flux valve). Because system accuracy is now dependent upon the earth’s magnetic field, the slaved
mode should not be used in latitudes greater than 70° and in areas where the earth's magnetic field is distorted. To place the reference system in the slaved mode proceed as follows:

1. Mode switch on compass controller - SLAVED
2. Sync indicator meter - CHECK
 Allow 10 seconds for automatic fast synchronization and check the sync indicator meter for a center-scale indication. Slight deviation of the needle from the center position is corrected by normal sync.
3. Pitch trim control on ADI - ADJUST
 Adjust the pitch trim control on the ADI for zero pitch attitude.

NAVIGATION COMPUTER SET (AN/ASN-46A) (Before TO 1F-4E-626 and TO 1F-4E-671)

The AN/ASN-46A navigation computer set contains both a great circle and a rhumb line computer. The great circle computer is utilized at ranges of greater than 120 nautical miles. At 120 ±10 nautical miles, the set automatically switches to rhumb line computations. The navigation computer consists of a control panel and an amplifier computer. The set may be operated with the INS turned OFF (Air Data Mode). Readouts available from the navigation computer are the same in either mode, but more accurate in the inertial mode. When operating in the inertial mode, all inputs necessary for the operation of the navigation computer are supplied by the INS except initial aircraft position, initial magnetic variation, and the desired target coordinates, which must be provided by the operator. In the air data mode, the operator must continuously provide the navigation computer with true wind direction and velocity, magnetic variation, and desired target coordinates. True airspeed is provided by the air data computer (ADC); magnetic heading comes from the compass system. If a failure of the INS occurs, the navigation computer automatically transfers to the air data mode, which is indicated by the illumination of the AIR DATA MODE light on the computer control panel. The navigation computer provides the aircrew with the following readouts:

a. Aircraft present position in latitude and longitude, based on INS information in the inertial mode or dead reckoning computations in the air data mode.
 b. The continuous great circle (over 120 NM) or rhumb line (under 120 NM) bearing and distance to either of two preset targets.
 c. Aircraft ground speed.
 d. Aircraft magnetic ground track.
 e. Aircraft drift angle (magnetic heading relative to magnetic track).

Accuracy of the present position readout in the inertial mode is 3 nautical miles per hour, or less, circular error of probability. In air data mode, the accuracy of the present position readout depends primarily on the accuracy of the wind and magnetic variation information provided manually by the operator. Assuming correct wind and magnetic variation information, the accuracy of the equipment in air data mode is as follows:

a. Present position latitude (between 72° N or S latitude) ±17 nautical miles per hour of operation.
 b. Present position longitude (between 72° N or S latitude) ±27 nautical miles per hour.

For purposes of discussion, the navigation computer can be divided into two functional sections; a present position computer, and a course and distance computer.

PRESENT POSITION COMPUTER

In the inertial mode, the present position computer functions to provide a readout of aircraft position in latitude and longitude. Prior to flight, the operator sets the initial position into the navigation computer present position counters. During alignment, these coordinates are also inserted into the INS. As the aircraft moves in any horizontal direction, the navigation computer receives change in latitude and longitude signals from the INS. The changing latitude and longitude signals are used to drive the present position counters, thereby continuously reflecting the aircraft's present position. In air data mode, the present position computer uses true airspeed from the ADC, wind and magnetic variation information manually set by the operator, and magnetic heading information from the compass system to compute ground speed and true course traveled. Ground speed is integrated with time to attain distance, which is converted to a change in latitude and longitude. The changing latitude and longitude is reflected in the present position counters, thereby providing a continuous dead reckoning aircraft position.

COURSE AND DISTANCE COMPUTER

The basis of course and distance computation at ranges greater than 120 nautical miles (great circle computer) is the solution of the spherical triangle, formed on the earth's surface by the geographic north pole (true north), the present position, and the preselected target or memorized coordinates. The rhumb line computer solves a plane right triangle whose known sides are the latitude and longitude difference between the present position and the selected target or memorized coordinates. The system automatically switches from great circle computations to rhumb line computations when the great circle range to the selected target is 120 ±10 miles.

NAVIGATION COMPUTER CONTROL PANEL

The navigation computer control panel contains all controls and counters necessary for the operation of the navigation computer.

Function Selector Knob

The function selector knob is a five-position rotary switch with positions of OFF, STBY, TARGET 1, TARGET 2, and RESST. The OFF position removes all power from the system. The STBY position supplies filament voltage to the amplifier computer but the latitude and longitude
integrator channels of the system are inoperative. The TARGET 1 position selects readouts of range and bearing to preselected coordinates set on the target counters. The TARGET 2 position selects range and bearing readouts referenced to memorized coordinates. The RESET position is used to place any desired set of coordinates into the memory circuits. Placing the knob to RESET causes the previously memorized coordinates to be lost. Moving the knob from RESET to any other position causes the coordinates appearing on the target counters to be memorized. A restriction on the knob prevents accidental switching to OFF or RESET. The knob must be pulled out slightly to override this restriction.

Wind Control Knobs

The wind control knobs consist of the wind speed and the wind from control knob. The wind speed control knob is used to manually insert the wind speed affecting flight into the system and is displayed on the wind speed counter. The wind from control knob is used to manually insert the true wind direction.

Magnetic Variation Control Knob

The magnetic variation control knob is used to manually insert the magnetic variation angle into the system.

Position Control Knobs

The position control knobs are used to manually insert present position latitude and longitude to establish an initial fix for the dead reckoning function of the navigation computer or as a reference for INS alignment. The position latitude and longitude counters continuously indicate the aircraft present position in degrees and minutes during flight.

Target Control Knobs

The target control knobs serve two purposes; one is to insert any desired set of coordinates (base, alternate target, or destination point) into the memory circuits of the system, the other is to manually insert the target latitude and longitude into the system. The system provides output displays to fly to memorized coordinates when the function selector knob is placed to TARGET 2, and to the coordinates appearing on the target counters when the function selector knob is placed to TARGET 1.

Position Update Switch

The position update switch is used to update the position latitude and longitude during flight. The switch positions are SET, NORMAL, and FIX.

Variation Sync Meter

The variation sync meter indicates the error in the manual magnetic variation setting during the inertial mode. Rotating the variation control knob in the appropriate direction centers the vertical bar in the variation sync meter, indicating that the correct magnetic variation is set on the variation counter. Rotation of the variation control knob in the air data mode has no effect on the meter.

Test Cap Off Light

This light illuminates when the test cap on the front of the amplifier-computer is not properly connected, or when the true airspeed circuit from the air data computer is open. Either condition will only affect computer operation in the air data mode.

Latitude and Longitude Sync Lights

The LAT and LONG sync lights illuminate when the latitude and longitude position counters do not agree with the inertial navigation set latitude or longitude output.

NAVIGATION COMPUTER OPERATION

All control knobs required to operate the navigational computer are on the computer control panel. To simplify the procedure, it should be understood that where a counter setting is specified, the control knob associated with the particular counter is rotated to set the counter. In the case of the position latitude and longitude counters and the magnetic variation counter, the associated control knobs must be pressed in to engage them with their respective counters before they can be rotated effectively.

OUTPUT DISPLAYS

The navigation computer display information in the front cockpit is shown in section 1. To display navigation computer information on the BDHI, select the NAV COMP position on the navigation selection switch. The display information on the BDHI is as follows:

a. Magnetic bearing to target or base displayed on No. 1 pointer when read against the compass card. A relative bearing to the target or base can also be read by noting the number of degrees from the index clockwise to the No. 1 pointer.

b. Magnetic ground track displayed on No. 2 pointer when read against the compass card. Left or right drift angle can also be read by noting the number of degrees left or right from the index.

c. Distance to the target or base displayed on the range counter.

d. Magnetic heading when compass card is read under the index.
To travel the great circle route to the target or base, the aircraft should be flown on a course that causes the bearing and track pointers to be coincident. However, it is not necessary to fly the course shown by the coincidental pointers. Departure from the route may be made, as a part of evasive maneuvers or to fly a search pattern, without affecting the operation of the system. Since computations are being made continuously, the current position of the airplane is shown at all times on the position counters regardless of the path flown. As the target (or base) is approached, the distance on the range counter decreases. When the target is reached, uncertainty is exhibited by the No. 1 pointer which turns 180° as the target is passed in order to indicate bearing to target.

Updating Methods

The position counters should be checked and updated at each opportunity by one of the following methods:

a. **VISUAL/RADAR** reference to a geographical position. Adjust the position latitude and longitude to agree with the latitude and longitude of the VISUAL/RADAR fix. This latitude and longitude may be obtained from maps, charts, or publications.

b. **TACAN** fix. Set the latitude and longitude of the acquired tacan station in the target counters or in base memory. Adjust the present position counters so that the No. 1 pointer and range counter on the BDHI agree with the tacan readout.

c. **GCI** or radar monitored fix. Set the latitude and longitude of the controlling agency in the target counters or in base memory. Adjust the position counters so that the No. 1 pointer and range counter on the BDHI agree with the bearing and distance provided by the controller.

Updating Procedures, Inertial Mode

Aircraft present position (represented by the position latitude and longitude counters) may be updated in the inertial mode as follows:

a. A few minutes before reaching the point of known coordinates, pull outward on the position update switch and place it to SET. This disengages the position latitude and longitude counters.

b. Rotate the position latitude and longitude control knobs until the coordinates of the approach point appear in the position latitude and longitude counters.

c. Place the position update switch to FIX and hold in this position.

d. When exactly over the known point, release the switch; it is spring-loaded and returns to the NORMAL position, completing the updating procedure.

The inertial navigation set updates at a rate of approximately 3 minutes of latitude and 3 minutes of longitude per second. For example, if the latitude was changed by 5 minutes and the longitude was changed by 15 minutes, the longitude change would determine the amount of time the position update switch must be held in FIX position. In this example, the position update switch must be held in the FIX position for a minimum time of 5 seconds prior to reaching the known point, otherwise the INS is only partially updated. When the position update switch is moved from SET to FIX, it must pass through NORMAL position. A time delay circuit in the computer control panel prevents the position counters from going to normal operation for about one-half second. Therefore, the switch movement from SET to FIX must be a smooth continuous movement in order to prevent an unwanted interval of NORMAL operation.

Updating Procedures, Air Data Mode

The aircraft present position may be updated in the air data mode by either of two methods. One method of updating is to rotate the position latitude and longitude control knobs until the coordinates of the aircraft actual present position appear in the position latitude and longitude counters. This may be accomplished with the function selector knob in any position except RESET or OFF. The other method utilizes the position update switch and has the advantage that the navigation computer may be instantaneously updated when the aircraft is over the point of known coordinates.

Leap Frog Operation

A leap frog type of operation may be used wherein the aircraft is normally flown in TGT 2 toward a memorized point. While onroute, the next point is set on the target counters. When the first destination (the initial TGT 2) is reached, the function selector knob is momentarily moved to RESET and then to TGT 2. When this is done, the target counter settings are transferred to the memory circuits and the coordinates of the point just reached are erased. The target counters are now free to receive new coordinates. While on the second leg, the target counters may be set to a third destination without interfering with steering to the second. When the second destination is reached, the procedure may be repeated and a fourth destination can be established while flying to the third. This procedure can be repeated as many times as desired.

NAVIGATION AND WEAPON DELIVERY SYSTEM (AN/ASQ-203) (After TO 1F-4E-671)

After TO 1F-4E-671, the AN/ASN-46A Navigation Computer Set is replaced by the AN/ASQ-203 Navigation and Weapon Delivery System which performs all of the navigation computer functions. Refer to TO 1F-4E-34-1-1-3 for a detailed description of the navigation function of NWDS.

AIR REFUELING SYSTEM

NOTE

Refer to foldout section for cockpit illustration.

The air refueling system utilizes a receptacle, aft of the rear cockpit, above the number 2 fuselage fuel cell. Actuation of the receptacle is controlled by the air refuel switch on the fuel control panel. Placing the air refuel switch to EXTEND extends the receptacle, interrupts the fuel control panel continuity, and illuminates the air
Refuel READY light. When the receptacle is extended, the air refueling lights (exterior) illuminate. With the receptacle extended, the pilot must fly a formation position with the tanker. The boom operator in the tanker then extends the boom into the receptacle. When the boom nozzle is seated in the receptacle, a solenoid actuated shuttle valve opens and directs utility hydraulic pressure to the two locking toggles in the refueling receptacle. These toggles grip the nozzle and lock the boom to the refueling receptacle. These toggles may be unlocked by the tanker when the tanker is in automatic mode. The tanker cannot release the toggles if refueling in TANKER MANUAL mode. The air refueling release button or the air refuel receptacle circuit breaker (No. 2 circuit breaker panel) will release the toggles regardless of the tanker refueling mode.

NOTE
- If the tanker informs the receiver that they are refueling in TANKER MANUAL mode, the receiver must initiate the disconnect by using the air refueling release button or pulling the air refuel receptacle circuit breaker.
- During any abnormal engagement, the automatic and tanker disengage features are lost and the receiver must initiate the disconnect.

Once the boom is locked in the receptacle, the READY light goes out and fuel is transferred (at a rate up to 3900 pounds per minute) to any fuel cell or tank that will accept it. An inducing cell in the receptacle connects the receiver refueling amplifier and tanker electrical circuits. This illuminates the director lights, and establishes the automatic (tanker initiated) disengage capabilities. If the boom becomes disengaged, an air refuel DISENGAGED light illuminates indicating fuel transfer is interrupted. Once disengaged, the system must be reset to resume taking fuel. When the fuel system is reset, the READY light illuminates indicating a new hook-up can be made. At the completion of the air refueling sequence, the boom receptacle may be retracted and continuity restored to the fuel control panel, by placing the air refueling switch to RETRACT. On aircraft 67-398 and up, an amplifier override relay is added to the air refueling circuit to permit normal boom–receptacle engagement with a failed amplifier. For normal and emergency air refueling procedures refer to F/RF-4 Flight Crew Air Refueling Procedures (TO 1-1C-1-8).

Air Refuel Switch

The air refuel switch is a two-position toggle switch on the fuel control panel. Placing the air refuel switch to EXTEND extends the boom receptacle, interrupts the normal continuity to the fuel control panel, depressurizes the tanks, turns on the hydraulic transfer pumps, and illuminates the air refuel READY light. The ready light will not illuminate until the receptacle is fully extended. After the boom is locked into the receptacle, fuel is transferred to any fuel cell or tank that will accept it. Fuel to each cell or tank is automatically shut off by its fuel level control valve. Three external tanks FULL indicator lights illuminate when the their respective tanks become full. Placing the air refuel switch to RETRACT retracts the receptacle and restores normal continuity to the fuel control panel. The air refuel switch is used to reset the fuel system during air refueling by cycling from EXTEND to RETRACT and back to EXTEND. With the air refuel switch in EXTEND, pressurization to all internal and external fuel tanks is shut off and fuel will not transfer from internal wing or external fuel tanks. However, placing the internal wing dump switch to DUMP repressurizes the internal wing tanks and provides normal wing fuel dump. If receptacle door is damaged during refueling operations, pull the air refuel receptacle circuit breaker (DI, No. 2 panel) and place the air refuel switch to RETRACT to pressurize fuel tanks and transfer fuel.

Refuel Selection Switch

A two-position refuel selection switch, marked INT ONLY and ALL TANKS, is on the fuel control panel. The INT ONLY position closes the external tank(s) fuel shutoff valves allowing only the fuselage and wing tanks to be refueled. The ALL TANKS position opens the external tank(s) fuel shutoff valves, allowing all fuel tanks to be refueled.

Air Refueling Release Button

The refueling release button is a push–button type switch on the front cockpit stick grip. When release from the boom is desired, depress and hold the release button down until the air refuel DISENGAGED light illuminates. Throttle or attitude changes should not be made until the boom is clear of the receptacle. If the above methods of disengagement fail, pull the AIR REFUEL RECEPT circuit breaker (No. 2 circuit breaker panel). Once disengagement is effected, reset the circuit breaker.

Ready Light

The air refuel READY light indicates that the fuel system is being conditioned to receive fuel. On aircraft 66-284 thru 67-397, the READY light illuminates when the air refuel switch is placed to EXTEND. On aircraft 67-290 and up, the READY light illuminates when the air refuel receptacle is fully extended. The air refuel READY light remains illuminated until the boom is locked into the receptacle or the air refuel switch is placed to RETRACT.

Diseagaged Light

The air refuel DISENGAGED light indicates boom disengagement during the refueling cycle. The air refuel DISENGAGED light remains illuminated until the fuel system is reset to continue refueling, or the receptacle is retracted.

NOTE
- Illumination of the DISENGAGED light is not a positive indication of disconnect.
- On aircraft 67-398 and up, a marginal or improperly rigged contact limit switch can cause the DISENGAGED light to illuminate after the boom is locked in the receptacle. If this occurs, refueling can be continued using the procedures for a failed refueling amplifier.
acceleration times with kerosene base fuels for the light-off for ground starts below 5°C (40°F).

Thrust is not degraded using alternate fuels. Airstart capability with an alternate fuel is not significantly different than with JP-4 provided the engine has not been inoperative for an extended time since the fuel entering the main fuel control will be warm.

A one time flight using an alternate fuel with the fuel controls specific gravity adjustment set for JP-4 is permissible; however for optimum performance, the fuel controls should be set for the fuel in use. The following information is provided for comparison to operating on JP-4 with the fuel controls set for JP-4.

(1) Rapid throttle transients to MAX afterburner during maneuvering flight, at angle of attack greater than 24 units, increases the possibility of engine flameouts/compressor stalls.

(2) Airstart capability does not change significantly when the engines have been shutdown for less than 1 minute. For shutdown times of 1–4 minutes, a general reduction in reliated altitude of 6000 feet is realized.

(3) The following restrictions apply. Ambient temperature must be above -20°F for engine start. Maximum rate of throttle movement allowed are 5 seconds IDLE to MIL, 3 seconds 85% to MIL and 8 seconds minimum AB to maximum AB. Stabilize engines at MIL prior to selecting minimum AB.

(1) For airstarts, the time required for ignition/throttle ON to idle rpm increased by 10 to 25 seconds.

(2) There is no loss in afterburner light—off, nor any increase in susceptibility to engine compressor stall, or flameout during throttle transients.
For one time flight only, fuels may be intermixed during ground or air refueling operations. No change in engine operating limitations or trim is required.

NATO F-34 and F-44 may not contain corrosion inhibitor. NATO F-35, NATO F-43, JET A, and JET A-1 may not contain icing or corrosion inhibitors. Restrict operation without corrosion inhibitor to 10 consecutive hours. Restrict operation without icing inhibitor to one flight.

Alternate fuels except JET B are heavier than JP-4; refer to Fuel Quantity Data table, section I. The increased fuel weight will cause a CG shift of about 0.1% aft and an increase in range of about 5%.

EMERGENCY FUEL

In an emergency, the engines may be operated on MIL-G-5572B 115/145 AVGAS (NATO F-22) if JP-4 or an alternate fuel is not available. When AVGAS is used, the aircraft is restricted to one flight at subsonic speeds. AVGAS has a specific gravity range between 0.730-0.785. The pilot should be aware that the following degradations in engine performance will occur:

a. Longer time to start and accelerate, with possible missed-starts or start-stalls.
b. Maximum engine RPM and EGT may not be attained.
c. Slow acceleration throughout the operating range.
d. Lower than normal afterburner thrust.
e. Reduced aircraft range.

Airspeed Limitations

The maximum permissible airspeeds for flight in smooth or moderately turbulent air are shown in figure 5-3. Under some conditions, maximum airspeeds are determined by inlet temperature limitations and transient operations limitations; refer to Engine Airspeed Limits (figure 5-4). Limiting airspeeds for operation of various airplane systems are presented in figure 5-5.

NOTE

When flying below 10,000 feet, caution should be used when operating the aircraft above 0.87 Mach to preclude oscillations in case of stability augmentation failure.

<table>
<thead>
<tr>
<th>ALTITUDE RANGE</th>
<th>STEADY STATE LIMIT</th>
<th>TRANSIENT LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEA LEVEL TO 30,000 FEET</td>
<td>POINT AT WHICH DUCT TEMP MILS LIGHE IN LIMITS (221 C) OR 750 KNOTS WHICHEVER OCCURS FIRST.</td>
<td>NONE</td>
</tr>
<tr>
<td>30,000 FEET AND UP</td>
<td>POINT AT WHICH DUCT TEMP MILS LIGHE IN LIMITS (229 C) OR 750 KNOTS WHICHEVER OCCURS FIRST.</td>
<td>5 MINUTES PER FLIGHT ABOVE THE STEADY STATE LIMIT NOT TO EXCEED 750 KNOTS OR 0.87 MACH ABOVE THE SPEED AT WHICH THE STEADY STATE LIMIT IS REACHED</td>
</tr>
</tbody>
</table>

Figure 5-4

AOA Limitations

The maximum allowable angle of attack is:

a. Above 35,000 feet - 25 units.
b. 35,000 feet and below - 30 units.

Prohibited Maneuvers

a. Full-deflection aileron roll in excess of 360°
b. Full-deflection aileron roll into the heavy wing during supersonic asymmetric flight is prohibited.
c. Intentional spins.

Gross Weight Limitations

The maximum allowable gross weights are:

a. Without 26 ply tires, 58,000 pounds for any ground operation.
b. With 26 ply tires, 62,000 pounds for any ground operation.
c. 46,000 pounds for landing.

To estimate aircraft takeoff gross weight, refer to Airplane Loading chart in part 1 of Performance Data appendix A.

Touchdown Limitations

Refer to figure 5-6. The normal landing technique (outlined in section II) will result in descent rates of approximately 700 fpm during approach and 500 fpm touchdown at typical landing gross weights.
EXTERNAL STORES LIMITATIONS

TABLE OF CONTENTS

GENERAL

A. The minimum acceleration for release or employment in level flight is 10. The minimum acceleration for employment or release in a dive delivery is the normal G loading for a given dive angle which can be obtained only when a wing level straight line flight path is maintained prior to release or employment.

B. Speeds or G quoted in the “employment” column are applicable to the dispensing limitations of the CBUs, the firing limitations of the gun, the launching limitations of the rockets and missiles, etc.

C. Speeds or G quoted in the “release” column are applicable only to releasing the stores from the suspension equipment.

D. Speeds quoted in the “jetison” column are applicable to jetisoning the combined suspension equipment and stores from the airplane.

E. The term “radius” in the “External Stores Notes” applies to the single-ripple and single-continuous release modes.

F. Unless otherwise indicated in the “External Stores Notes,” the minimum INTVL setting for the single-ripple and single-continuous release modes is 0.6 SEC.

G. Unless otherwise indicated in the “External Stores Notes,” the minimum INTVL setting for the single release mode is 3.0 SEC when adjacent weapon stations are selected and 6.0 SEC when a single weapon station or one-adjacent weapon station is selected.

H. With partially loaded MER/TERs, use a minimum interval of 0.0 SEC to stop over one empty MER/TER position in the right or left mode. To stop over two empty MER/TER positions, use a minimum interval of 0.4 SEC.

I. If the situation warrants, stores may be jetisoned with flaps and slots extended. However, release, jetison and employment of stores should be accomplished with slots in automatic operation only.

J. Refer to Figure 5–10 for reduced acceleration G limits as a function of gross weight and Mach Number.

K. For asymmetric carriage, refer to Section VI. Flight with Asymmetric Loading.

L. Recommended release sequence is outboard to inboard. Releasing inboard stores prior to outboard may result in an aft CG shift. Under some circumstances the shift may exceed the aft CG limit.

M. Captive AIM-9 missiles may be flown with wings, rollarons, and/or fins/teardrops removed.

NA, Not Applicable/Authorized

NE, Not Established

Aircraft Limits

Alternate Limitations — Either primary or alternate limitations apply to all configurations for station loading.

EXTERNAL STORES

<table>
<thead>
<tr>
<th>STORES</th>
<th>SHEETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARGO POD</td>
<td>18 and 19</td>
</tr>
<tr>
<td>DISPENSERS AND CLUSTER BOMB</td>
<td></td>
</tr>
<tr>
<td>UNITS</td>
<td></td>
</tr>
<tr>
<td>BL-755</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-7 (SUU-13)</td>
<td>14 and 15</td>
</tr>
<tr>
<td>CBU-12 (SUU-7)</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-24 8/8</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-30 (SUU-13)</td>
<td>14 and 16</td>
</tr>
<tr>
<td>CBU-32 (SUU-13)</td>
<td>14 and 16</td>
</tr>
<tr>
<td>CBU-46 (SUU-7)</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-49 (SUU-30)</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-52 (SUU-30)</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-56 (SUU-30)</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-57 (SUU-30)</td>
<td>12 and 13</td>
</tr>
<tr>
<td>CBU-87 8/8</td>
<td>13A and 13B</td>
</tr>
<tr>
<td>CBU-88/8 (GATOR MINIE)</td>
<td>13A and 13B</td>
</tr>
<tr>
<td>CHAFF DISPENSERS</td>
<td>18 and 19</td>
</tr>
<tr>
<td>ROCKEYE 11 MK 20 MOD 2</td>
<td>14 and 15</td>
</tr>
<tr>
<td>SUU-20</td>
<td>14 and 16</td>
</tr>
<tr>
<td>SUU-21</td>
<td>14 and 15</td>
</tr>
<tr>
<td>ECM PODS</td>
<td>10 thru 19A</td>
</tr>
<tr>
<td>FLARE DISPENSERS AND FLARES</td>
<td>18 and 19</td>
</tr>
<tr>
<td>FUEL TANKS</td>
<td>2 and 3</td>
</tr>
</tbody>
</table>

GP BOMBS

<table>
<thead>
<tr>
<th>BOMBS</th>
<th>SHEETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLU-109</td>
<td>11A and 11B</td>
</tr>
<tr>
<td>GP BOMBS WITH POLE EXTENDERS</td>
<td>10 and 11</td>
</tr>
<tr>
<td>MATRA 250 Kg</td>
<td>7C and 7D</td>
</tr>
<tr>
<td>M36E2</td>
<td>4 and 5</td>
</tr>
<tr>
<td>M117D</td>
<td>8 and 9</td>
</tr>
<tr>
<td>M117GP (MAU-103A/B FN)</td>
<td>8 and 9</td>
</tr>
<tr>
<td>M118GP</td>
<td>8 and 9</td>
</tr>
<tr>
<td>M129E1, M129E2, and M191-1</td>
<td>8 and 9</td>
</tr>
<tr>
<td>MC-1 GAS BOMB</td>
<td>8 and 9</td>
</tr>
<tr>
<td>MK-36 DESTRUCTOR</td>
<td>10 thru 11</td>
</tr>
<tr>
<td>MK-81 LDGP</td>
<td>8 and 9</td>
</tr>
<tr>
<td>MK-82 LDGP</td>
<td>10 and 11</td>
</tr>
<tr>
<td>MK-82 SNAKEYE 1/SNAKEYE 1D</td>
<td>10 and 11</td>
</tr>
<tr>
<td>MK-83/83/83/BSU-499/B</td>
<td>4 and 5</td>
</tr>
<tr>
<td>MK-83 LDGP</td>
<td>10 and 11</td>
</tr>
<tr>
<td>MK-84 LDGP</td>
<td>10 and 11</td>
</tr>
<tr>
<td>MK-84/BSU-SOV/B</td>
<td>4 and 5</td>
</tr>
</tbody>
</table>

GUIDED BOMBS

<table>
<thead>
<tr>
<th>BOMBS</th>
<th>SHEETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 thru 236</td>
<td></td>
</tr>
<tr>
<td>18 and 19</td>
<td></td>
</tr>
<tr>
<td>21 thru 23</td>
<td></td>
</tr>
<tr>
<td>4 and 5</td>
<td></td>
</tr>
<tr>
<td>6 thru 7</td>
<td></td>
</tr>
</tbody>
</table>

MISSILES

<table>
<thead>
<tr>
<th>BOMBS</th>
<th>SHEETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 and 17</td>
<td></td>
</tr>
<tr>
<td>2 thru 5</td>
<td></td>
</tr>
<tr>
<td>20 and 21</td>
<td></td>
</tr>
<tr>
<td>21A and 21B</td>
<td></td>
</tr>
<tr>
<td>20 and 21</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 1 of 23)

Change 10 5-13
External Stores Limitations

Fuel Tanks and Special Weapons

<table>
<thead>
<tr>
<th>Store</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>CARRIAGE</th>
<th>Jettison 1G Level Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 Gallon High Performance Centerline Tank</td>
<td>Aero 27/A BRU-5/A</td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>Not Authorized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>175 to 375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>400 to 445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>425 to 510</td>
</tr>
<tr>
<td>600 Gallon Centerline Tank</td>
<td>Aero 27/A BRU-5/A</td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>Not Authorized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>175 to 375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>400 to 445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>425 to 510</td>
</tr>
<tr>
<td>900 Gallon Centerline Tank</td>
<td>Aero 27/A BRU-5/A</td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>Not Authorized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>175 to 375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>400 to 445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>425 to 510</td>
</tr>
<tr>
<td>845 Gallon Bomb or BDU-5/8 Practice Bomb</td>
<td>Aero 27/A BRU-5/A</td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>Not Authorized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>175 to 375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>400 to 445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>425 to 510</td>
</tr>
<tr>
<td>507 Gallon Bomb or BDU-12/6 Practice Bomb</td>
<td>Aero 27A 38 inch</td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>Not Authorized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>175 to 375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>400 to 445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empty to 10% Full</td>
<td>600 1.5 +6.0 +4.0</td>
<td>425 to 510</td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 2 of 23)
FUEL TANKS AND SPECIAL WEAPONS

<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>ACCEL G</td>
<td>KNOTS</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Roll Bank:
 - Empty = 260 degrees.
 - Empty = 150 degrees.
- Roll Acceleration:
 - Empty = Full stick trim.
 - Empty to Full = Half stick trim.

 - Do not exceed 60 AOA unless the tank is completely full or empty. The AOA restriction does not apply to the modified High Performance Centerline tank with filler cap located on the rear of the tank.

 - Jettison 0.53 to 2.0G and above 3 feet.
 - Jettison 0.53 to 1.0G and above 3 feet.
 - Jettison compatibility limit does not apply.

<table>
<thead>
<tr>
<th>A</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>175</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>176</th>
<th>500</th>
</tr>
</thead>
</table>

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- For approved stores to be carried with special weapons, refer to TO 1F-4C-25.
- Jettison 0.53 to 2.0G and above 3 feet.
- Jettison 0.53 to 1.0G and above 3 feet.
- Jettison compatibility limit does not apply.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Full or Empty: Jettison between 200 and 300 knots below 15,000 may cause airplane control and engine damage.
- Roll rate limited to 60 degrees.
- Catastrophic failure of the Royal Jet 600 gallon centerline tank may cause severe pitch-up.

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- (Empty to 19% Full): Roll rate is aircraft limits.

<table>
<thead>
<tr>
<th>E</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>175</th>
<th>750</th>
</tr>
</thead>
</table>

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- For approved stores to be carried with special weapons, refer to TO 1F-4C-25.
- Jettison 0.53 to 2.0G and above 3 feet.
- Jettison 0.53 to 1.0G and above 3 feet.
- Jettison compatibility limit does not apply.

- If gross weight is over 41,000 lbs, refer to Acceleration Limitations Chart.
- For approved stores to be carried with special weapons, refer to TO 1F-4C-25.
- Jettison 0.53 to 2.0G and above 3 feet.
- Jettison 0.53 to 1.0G and above 3 feet.
- Jettison compatibility limit does not apply.

- If gross weight is over 37,500 lbs on STA 5 or is over 41,000 lbs on STA 26,8 refer to Acceleration Limitations Chart.
- STA 1 & 5: Maximum release speed with short delay (1 sec) is 550 Knots or 95 Mach. STA 2 & 61: Short time delay not authorized.
- Slotted aircraft with external frangible strap are limited to 550 KIAS with special weapons on STA 5.
- For approved stores to be carried with special weapons, refer to TO 1F-4C-25.
- Refer to TO 1F-4C-25.

<table>
<thead>
<tr>
<th>F</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>176</th>
<th>500</th>
</tr>
</thead>
</table>

- If gross weight is over 37,500 lbs on STA 5 or is over 41,000 lbs on STA 26,8 refer to Acceleration Limitations Chart.
- STA 1 & 5: Maximum release speed with short delay (1 sec) is 550 Knots or 95 Mach. STA 2 & 61: Short time delay not authorized.
- Slotted aircraft with external frangible strap are limited to 550 KIAS with special weapons on STA 5.
- For approved stores to be carried with special weapons, refer to TO 1F-4C-25.
- Refer to TO 1F-4C-25.

<table>
<thead>
<tr>
<th>G</th>
<th>NA</th>
<th>NA</th>
<th>NA</th>
<th>176</th>
<th>500</th>
</tr>
</thead>
</table>

- If gross weight is over 37,500 lbs on STA 5 or is over 41,000 lbs on STA 26,8 refer to Acceleration Limitations Chart.
- STA 1 & 5: Maximum release speed with short delay (1 sec) is 550 Knots or 95 Mach. STA 2 & 61: Short time delay not authorized.
- Slotted aircraft with external frangible strap are limited to 550 KIAS with special weapons on STA 5.
- For approved stores to be carried with special weapons, refer to TO 1F-4C-25.
- Refer to TO 1F-4C-25.
External Stores Limitations

Special Weapons, Missiles, and Bombs

<table>
<thead>
<tr>
<th>Store</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jetison 1G Level Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Airspeed</td>
<td>Accel G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Knots</td>
<td>Mach</td>
</tr>
<tr>
<td>B-61 Bomb, B-61 ()</td>
<td>Aero-29/A</td>
<td>MAU-12 (With Adapter)</td>
<td>750</td>
<td>1.2</td>
</tr>
<tr>
<td>Type III Training Bomb, or BDU-38/B</td>
<td>BRU-10/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice Bomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load < 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGM-45A, B</td>
<td>LAU-34/A or LAU-118 Launcher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATM-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load<4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty LAU-118 Launcher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGM-65A</td>
<td>LAU-88A, A/A or LAU-117/AV (V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESIO, or ESIO (Maverick! Missile)</td>
<td>Launcher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load < 6</td>
<td>LAU-88-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAU-117-2</td>
<td>TGM-65 (Maverick Tracer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAU-88-6</td>
<td>LAU-117-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load < 6</td>
<td>LAU-117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty LAU-117 Launcher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-7E-3 and AIM-7E-3 with AIM-8/WM-19 AIM-7E Missiles</td>
<td>Aero-7A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load < 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M862 Cluster</td>
<td>MER (Fwd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incendiary Bomb</td>
<td>TER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load < 10</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-82/BU-49/B (AIR)</td>
<td>MER (Fwd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load: Single-24 Ripple-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK-84/BU-50/B (AIR)</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load < 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 4 of 23)
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>ACCEL G</td>
<td>KNOTS</td>
<td>KNOTS</td>
<td>KNOTS</td>
</tr>
<tr>
<td>A</td>
<td>*</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 5 of 23)
External Stores Limitations

Missiles and Mixed Loads

<table>
<thead>
<tr>
<th>Store Details</th>
<th>Suspension Details</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jettison 16 LEVEL Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with ALQ-71(V)-2, 71(V)-3, ALQ-72 ALQ-87</td>
<td>*</td>
<td>*</td>
<td>+6.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with ALQ-101(V)-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with MK-82 LCCP or Scalפחות, CBU-52/B/B, CBU-58/B, A/B, CBU-71/B, A/B, MK-20, GBU-12/5/B, C/B, 5/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with AGM-45 and ATM-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with AGM-45 and ACM-65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with CBU-8/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9B/E/J/N/P/P-4 (basic, -1, -2 & -3 Configuration and Captive Training Missile) with CBU-89/8 Gator Mine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table

- **Airspeed**: 550 Knots, 0.95 Knots
- **Accel G**: +6.0, -1.0
- **Sym**: +4.8, 0.0
- **Unsym**: +4.0, 0.0
- **Jettison 16**: 175 Knots, 550 Knots

Figure 5-10 (Sheet 6 of 23)

5-18 Change 8
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>** **</td>
<td>176</td>
<td>750</td>
<td>NA</td>
</tr>
<tr>
<td>** **</td>
<td>176</td>
<td>550</td>
<td>+40°</td>
</tr>
<tr>
<td>** **</td>
<td>176</td>
<td>550</td>
<td>+60° to 80°</td>
</tr>
</tbody>
</table>

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Cartridges are not to be installed in MAU–12 pylon.
- Aircraft limits except with MK–8 warhead, see figure 5-11.
- ** Refer to TO 1F-4C-34-1-2-1.

<table>
<thead>
<tr>
<th>MAX</th>
<th>MIN</th>
<th>MAX</th>
<th>MIN</th>
<th>MAX</th>
<th>MIN</th>
<th>MAX</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.0</td>
<td>175</td>
<td>550</td>
<td>40</td>
<td>176</td>
<td>550</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+10.0</td>
<td>175</td>
<td>550</td>
<td>50</td>
<td>176</td>
<td>550</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+3.0</td>
<td>250</td>
<td>750</td>
<td>50</td>
<td>250</td>
<td>750</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+5.0</td>
<td>175</td>
<td>550</td>
<td>45</td>
<td>176</td>
<td>550</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>+5.0</td>
<td>175</td>
<td>550</td>
<td>45</td>
<td>176</td>
<td>550</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Roll rate limit is 120 deg/sec.
- CBU-52/53/71 release and jetson limits are 0.9 Mach.
- SS for MK–82 LDGP, Snakeye I and GBU–12/B, C/B, D/B
- ** 550/0.9 Mach for MK–82 Snakeye I High Drag.
- ** 45° to +45° for GBU–13B/B, C/B, D/B; –80° to +45° for MK–20; Level to –60° for MK–82 Snakeye I.

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Refer to TO 1F-4C-34-1-2-1.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- To ensure fins open, fin release wire is hardwired to swaybraces.
- Roll rate limit is 120 deg/sec.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- To ensure fins open, fin release wire is hardwired to swaybraces.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- To ensure fins open, fin release wire is hardwired to swaybraces.

Figure 5-10 (Sheet 7 of 23)
External Stores Limitations

Missiles and Mixed Loads

<table>
<thead>
<tr>
<th>Store</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jettison 1G Level Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Airspeed</td>
<td>Accel G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Knots</td>
<td>Mach</td>
</tr>
<tr>
<td>AIM-9B (EJ/N/P/P-4) (basic, -1, -2 & -3 Configuration and Captive Training Missile) Maximum Load = 4</td>
<td>Aero-3/B Launcher (with or without 3-inch spacers)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9 (Captive Training Missile) with BDU-338/8, D/B</td>
<td>Aero-3/B with 3-inch spacer on MAU-12 Pylon and TER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9 (Captive Training Missile) with MXU-648A/A, C/A Cargo pod</td>
<td>Aero-3/B with 3-inch spacer on MAU-12 Pylon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9B (EJ/N/P/P-4) (basic, -1, -2 & -3 Configuration and Captive Training Missile) with BLU-107/B DURANDAL</td>
<td>Aero-3/B with 3-inch spacer Special Weapons Adapter on MAU-12 Pylon with 2% swivels bolts and TER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9L/M with MK-82 LDGP or Snakeye, CBU-538/8, CBU-58/8, A/B, CBU-71B, A/B, CBU-123/B, C/B, D/B, MK-20</td>
<td>LAU-105 with double 3-inch spacers special Weapons Adapter on MAU-12 Pylon with TER-8A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9L/M with AGM-85A/B/D and TG 16-05</td>
<td>LAU-105 with double 3-inch spacers Special Weapons Adapter on MAU-12 Pylon with LAU-117 Launcher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-9L/M and CATM-9L/M</td>
<td>LAU-105 with single or double 3-inch spacers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 7A of 23)

5-18B Change 10
MISSILES AND MIXED LOADS

<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
</table>
| | | | • If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
• Roll rate limit is 200 deg/sec.
• Refer to TO 1F-4E-34-1-2-1.
• Aircraft limits except with MK-8 warhead, see figure 5-11.
• Stores compatibility limit does not apply. |

A

<table>
<thead>
<tr>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>175</td>
<td>750</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>+5.0</td>
<td>175</td>
<td>550</td>
<td>+60°</td>
<td>-60°</td>
</tr>
</tbody>
</table>

- **Remarks:**
 - If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
 - Roll rate limit is 200 deg/sec.
 - After release of all BDU-33 bombs, AIM-9 limitations are authorized.

B

<table>
<thead>
<tr>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- **Remarks:**
 - If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
 - Cartridges are not to be installed in MAU-12 pylons.
 - Limit for A/A +3.0 to 0.0; for C/A +4.0 to 0.0.

C

<table>
<thead>
<tr>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
| | +1.0 | 175 | 600 | +5° |to
- **Remarks:**
 - If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
 - Minimum intervelometer settings:
 - TER = 0.100
 - Ripple = Single and Pair
 - Simultaneous release from TER and centreline MER is prohibited.
 - For TER carriage, the set of lug wells must be used.

D

<table>
<thead>
<tr>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+5.0</td>
<td>175</td>
<td>550</td>
<td>+4.0</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+60°</td>
<td></td>
<td>-60°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Remarks:**
 - If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
 - Roll rate limit is 120 deg/sec.
 - GBU-52/59/71 release jettison limits are 0.9 Mach.
 - 5G for MK-82 LDGP, Snakeye 1 and GBU-12 B/B, C/B, D/B.
 - **500/0.9 Mach for MK-82 Snakeye 1 High Drag.
 - **500/0.9 Mach for MK-82 Snakeye 1 High Drag.
 - **45° to +45° for GBU-12 B/B, C/B, D/B; +45° to
 - -60° for MK-20; level to -60° for MK-82 Snakeye 1.

E

<table>
<thead>
<tr>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+3.0</td>
<td>175</td>
<td>750</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>+0.5</td>
<td>175</td>
<td>750</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- **Remarks:**
 - If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
 - Roll rate limit is 120 deg/sec.

F

<table>
<thead>
<tr>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
<th>ACCEL G</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>175</td>
<td>750</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- **Remarks:**
 - If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
 - Roll rate limit is 120 deg/sec.
 - Refer to TO 1F-4E-34-1-2-1.
 - Stores compatibility limit does not apply.

Figure 5-10 (Sheet 7B of 23)
External Stores Limitations

MISSILES, MIXED LOADS, AND BOMBS

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION</th>
<th>STATION LOADING</th>
<th>CARRIAGE</th>
<th>JETTISON TO LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AIRSPEED</td>
<td>ACCEL G</td>
<td>MIN</td>
</tr>
<tr>
<td>AIR-9B/E/J/H/7/P-4 (Basic, -1, -2 & -3 Configuration and Captive Training Missile) with BDU-338/B, D/B</td>
<td>Aero-3/B with 3-inch spacers with Special Weapons Adapter on MAU-12 Pylon with 2 1/2-inch swaybrace bolts and TER-9A</td>
<td>550</td>
<td>0.95</td>
<td>+5.0</td>
</tr>
<tr>
<td>AIR-9L/M and CATM-9L/M with BDU-338/B, D/B</td>
<td>LAU-105 with double 2-inch spacers with Special Weapons Adapter on MAU-12 Pylon with 2 1/2-inch swaybrace bolts and TER-9A</td>
<td>550</td>
<td>0.95</td>
<td>+5.0</td>
</tr>
<tr>
<td>AIR-9L/M and CATM-9L/M with MXU-64A/A, C/A Cargo Pod (Basic, -1, -2 & -3 Configuration and Captive Training Missile) with MXU-64A/A, C/A Cargo Pod</td>
<td>Aero-3/B with 3-inch spacers with Special Weapons Adapter on MAU-12 Pylon with 2 1/2-inch swaybrace bolts</td>
<td>550</td>
<td>0.95</td>
<td>+5.0</td>
</tr>
<tr>
<td>AIR-9L/M and CATM-9L/M with MXU-64A/A, C/A Cargo Pod</td>
<td>LAU-106 with double 2-inch spacers with Special Weapons Adapter on MAU-12 Pylon with 2 1/2-inch swaybrace bolts</td>
<td>550</td>
<td>0.95</td>
<td>+5.0</td>
</tr>
<tr>
<td>Matra 250 Kg Bomb (unstated) Maximum Load-6</td>
<td>TER-9A</td>
<td>500</td>
<td>0.9</td>
<td>+5.0</td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 7C of 23)
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>ACCEL G KNOTS KNOTS</td>
<td>ACCEL G KNOTS KNOTS</td>
<td>4-0° to -60°</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Roll rate limit is 200 degree/second.
- After release of all BDU-33 bombs, AIM-9 limitations are authorized.

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Roll rate limit is 200 degree/second.
- After release of all BDU-33 bombs, AIM-9 limitations are authorized.

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Cartridges are not to be installed in MAU-12 pylons.
- A/A: +3.0 to 0.0; C/A: +4.0 to 0.0.

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Charts.
- Cartridges are not to be installed in MAU-12 pylons.
- A/A: +3.0 to 0.0; C/A: +4.0 to 0.0.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Minimum ripple release interval is 0.14 seconds.
- Configure MAU-12 bomb rack with two ARD-863-1 cartridges and two 0.081-inch diameter dash three uranium.
- Configure T/E/EJ ejector units with one ARD-863-1 cartridge.
- This modification is certified only for the contingency rearming of USAF aircraft at allied bases with the exception of friendly aircraft.

Figure 5-10 (Sheet 7D of 23)
External Stores Limitations

GP Bombs

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION 1</th>
<th>SUSPENSION 2</th>
<th>STATION LOADING</th>
<th>CARRIAGE AIRSPEED</th>
<th>JETTISON LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M117 GP Bomb (Fwd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load—17</td>
<td></td>
<td></td>
<td></td>
<td>650 1.1 +5.0 -1.0</td>
<td>275 550</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600 1.3 +3.0 0.0</td>
<td>275 450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION 1</th>
<th>SUSPENSION 2</th>
<th>STATION LOADING</th>
<th>CARRIAGE AIRSPEED</th>
<th>JETTISON LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M117U (Deploy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M117R (Retarded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M117R (Low Drag Configuration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMAU—91 A/B, B/B Fin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load Single—16</td>
<td></td>
<td></td>
<td></td>
<td>550 1.1 +5.0 -1.0</td>
<td>375 500</td>
</tr>
<tr>
<td>Ripple—4</td>
<td></td>
<td></td>
<td></td>
<td>600 1.3 +3.0 0.0</td>
<td>275 450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION 1</th>
<th>SUSPENSION 2</th>
<th>STATION LOADING</th>
<th>CARRIAGE AIRSPEED</th>
<th>JETTISON LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M118GP Bomb AERO—271/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or BRU—5/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load—18</td>
<td></td>
<td></td>
<td></td>
<td>600 1.1 +5.0 -1.0</td>
<td>175 550</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION 1</th>
<th>SUSPENSION 2</th>
<th>STATION LOADING</th>
<th>CARRIAGE AIRSPEED</th>
<th>JETTISON LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M129E2 Leaflet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M129F2 Leaflet Bomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and MJU-1 Chaff Bomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load—18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION 1</th>
<th>SUSPENSION 2</th>
<th>STATION LOADING</th>
<th>CARRIAGE AIRSPEED</th>
<th>JETTISON LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC—1 Gas Bomb MAU—12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load—17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION 1</th>
<th>SUSPENSION 2</th>
<th>STATION LOADING</th>
<th>CARRIAGE AIRSPEED</th>
<th>JETTISON LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-81 LDGP Bomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load—24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 8 of 23)

Change 4
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>ACCEL G</td>
<td>KNOTS</td>
<td>KNOTS</td>
<td>ACCEL G</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+4.0</td>
</tr>
</tbody>
</table>

- If gross weight is over 46,000 lbs, refer to Accelaration Limitations Chart.
- Maximum setdown and release is 0.85 Mach.

Figure 5–10 (Sheet 11B of 23)
External Stores Limitations

Dispensers and Cluster Bomb Units

<table>
<thead>
<tr>
<th>Store</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jettison in Level Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLU-52/R, A/B</td>
<td>MER (ARM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CS-1 Filled)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBU-755 Cluster Bomb (MK 1, MK 2 No. 1, and MK 2 No. 1A)</td>
<td>TER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Details

<table>
<thead>
<tr>
<th>Store</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jettison in Level Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLU-52/R, A/B</td>
<td>MER (ARM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CS-1 Filled)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBU-755 Cluster Bomb (MK 1, MK 2 No. 1, and MK 2 No. 1A)</td>
<td>TER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures

- **Figure 5-10** (Sheet 12 of 23)
Dispensers and Cluster Bomb Units

<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
<td>MAX</td>
</tr>
<tr>
<td>ACCEL</td>
<td>KNOTS</td>
<td>KNOTS</td>
<td>ACCEL</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+3.0</td>
</tr>
<tr>
<td>A</td>
<td>450</td>
<td>550</td>
<td>1</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- If gross weight is over 45,000 lbs., refer to Acceleration Limitations Chart.
- MER: Minimum Release Interval Setting is 100 sec.
- Tube extensions are required on all dispensers.
- A ballast ring must be installed on all dispensers, except SUU–7D/A.
- After employment, the SUU–7 dispenser shall be released or retrieved before landing. This is to preclude return to base of any non-activated or partially ejected munitions.
- If gross weight is over 45,000 lbs., refer to Acceleration Limitations Chart.
- Maximum release is .9 Mach.
- If gross weight exceeds 45,000 lbs., refer to Acceleration Limitations Chart.
- Minimum release air speed for station 5 does not allow weapon ability to function at this speed.
- Minimum ripple release interval is 0.14 sec.
- The BL–755 series cluster bombs have not received safety certification by USAF Nuclear Munitions Safety Board (NNMSB).
- The munition is certified only for the contingency running of USAF aircraft at allied bases with this munition for allied inventories.
EXTERNAL STORES LIMITATIONS

STORE | SUSPENSION | STATION LOADING | CARRIAGE | JETTISON 1G LEVEL FLIGHT |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIRSPEED</td>
<td>ACCEL G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KNOTS</td>
<td>MACH</td>
</tr>
<tr>
<td>CBU-88/B GATOR MINE</td>
<td>MER (PWD)</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Load-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBU-87/B CEM</td>
<td>MER (PWD)</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5–10 (Sheet 13A of 23)

5-24B Change 10
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- (STA 1, 5, 9): To prevent bomb-to-bomb collision from MER stations, release interval must be 0.20 second or greater between tandem bomb releases on each station.
- To ensure fuses open, fat releases wire is hardwired to swivel/zone.
- (STA 5): BRU: SA Screw jacks must be safety wired.

- Maximum roll rate is limited to 120 degrees/second.
- Jettison limits are for emergency jettison only.
EXTERNAL STORES LIMITATIONS

Dispensers and Cluster Bomb Units

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION</th>
<th>STATION LOADING</th>
<th>CARRIAGE</th>
<th>JETTISON 1G LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIRSPEED</td>
<td>ACCEL G</td>
<td>MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KNOTS</td>
<td>MACH</td>
<td>SYM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UNSYM</td>
<td>KNOTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KNOTS</td>
</tr>
<tr>
<td>UNFINNED</td>
<td></td>
<td>550</td>
<td>0.9</td>
<td>+5.0</td>
</tr>
<tr>
<td>CBU-</td>
<td>MER (Fwd)</td>
<td></td>
<td>-1.0</td>
<td>+4.0</td>
</tr>
<tr>
<td></td>
<td>SUU-S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/A</td>
<td>13A/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39/A</td>
<td>13A/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39/A</td>
<td>13A/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38A/A</td>
<td>13B/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38B/A, C/A</td>
<td>13C/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispenser and Bomb</td>
<td>MER (Fwd)</td>
<td>550</td>
<td>0.9</td>
<td>+5.0</td>
</tr>
<tr>
<td>Maximum Load-18</td>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+4.0</td>
</tr>
<tr>
<td>M62</td>
<td>MER (Fwd)</td>
<td>550</td>
<td>1.1</td>
<td>+5.0</td>
</tr>
<tr>
<td>Mod 2, 3, 4</td>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
</tr>
<tr>
<td>CLUSTER BOMB</td>
<td>(ROCKEYE II)</td>
<td>550</td>
<td>1.2</td>
<td>+5.0</td>
</tr>
<tr>
<td>Maximum Load-12</td>
<td></td>
<td></td>
<td></td>
<td>-7.0</td>
</tr>
<tr>
<td>SUU-20/A</td>
<td></td>
<td>650</td>
<td>1.3</td>
<td>+3.0</td>
</tr>
<tr>
<td>SUU-20A/A</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td>+2.4</td>
</tr>
<tr>
<td>SUU-20A/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-20B/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bomb and Rocket Dispenser with MK 106, BDU-33B/B, D/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-21/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bomb Dispenser with MK 106 BDU-33B/B, D/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load-5</td>
<td>MAU-12</td>
<td>550</td>
<td>1.3</td>
<td>+5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7.0</td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 14 of 23)
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td>ACCEL G</td>
<td>KNOTS</td>
<td>ACCEL G</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+5.0</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5.0</td>
<td>300</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B						
+5.0	175	550				
			+1.0	275	550	
				175	450	

C						
+5.0	175	550	+1.0	200	450	0° to -45°
+0.5						

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Maximum release and employment is .9 Mach.
- Speed brakes must be retracted when launching from stations 2 and 8.

Figure 5-10 (Sheet 17 of 23)
External Stores Limitations

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION</th>
<th>STATION LOADING</th>
<th>CARRIAGE</th>
<th>JETTISON</th>
<th>LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALE-38</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaff Dispenser</td>
<td>Maximum Load-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALE-40 Flare/Chaff Dispenser</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispenser (2 Drop per pylon)</td>
<td>Maximum Load-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-16/A</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-23/A</td>
<td>G Adapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gun Pod</td>
<td>Maximum Load-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU-5/A</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-MM</td>
<td>Aero-27/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gun Pod</td>
<td>BRU-5/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-258/A</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flare Dispenser</td>
<td>MER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With LRU-1/8, -2/8,</td>
<td>(Fwd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2A/8, -2B/8, -5/8</td>
<td>Maximum Load-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-258C/A and</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUU-258E/A</td>
<td>MER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane Dispenser</td>
<td>(Fwd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with LRU-1/8, -2/8,</td>
<td>Maximum Load-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2A/8, -2B/8, -5/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MXU-848/A</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo Pod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MXU-848C/A</td>
<td>Cargo Pod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALQ-119(V)-10</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALQ-119(V)-16, -17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALQ-131(V)-4, -5, -6,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9, -10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALQ-176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALQ-184(V)-1, -2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRC 80-D11(V)</td>
<td>Missile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM Pod</td>
<td>Wall Adapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 18 of 23)
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>B</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Maximum jetstream is .9 Mach.
- Can be combined with any store authorized for carriage on stations 2 and 8, or with any stores depicted in combination for carriage on stations 2 and 8.
- Stores compatibility limit does not apply.
- If gross weight is over 37,600 lbs, refer to Acceleration Limitations Chart.
- Roll rate is 200 deg/sec.
- Stores compatibility limit does not apply.
- If gross weight is over 37,500 lbs, refer to Acceleration Limitation Chart.
- No stores are to be loaded in forward missile wells.
- Symmetrical flight only above 900 knots.
- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Release and Jetcock Full or Empty.
- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- The 5-ohm resistor switch on front of SUU-25E/1 must be in the OUT position when carried on any station.
- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Max roll rate is 120 deg/sec.
- Cartridges are not to be installed in MAU-12 pylon.
- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Roll rate is aircraft limits.
- Cartridges are not to be installed in MAU-12 pylon.
- STA 8 with ALQ-131, Nose Gear may be slow to retract.

Figure 5-10 (Sheet 18A of 23)
ECM Pods

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION</th>
<th>STATION LOADING</th>
<th>CARRIAGE</th>
<th>JETTISON 1G LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALQ-13WJ-12, -13, -14, -15 ECM Pod</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missile</td>
<td></td>
<td>3</td>
<td>1.5</td>
<td>F8.0 -3.0</td>
</tr>
<tr>
<td>Wall Adapter</td>
<td></td>
<td>4</td>
<td></td>
<td>F5.0</td>
</tr>
<tr>
<td>ALQ-188 ECM Pod</td>
<td>MAU-12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 19 of 23)
Spray Tanks and Targets

<table>
<thead>
<tr>
<th>Employment</th>
<th>Release</th>
<th>Delivery Angle</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
<td>MAX</td>
</tr>
<tr>
<td>ACCEL G</td>
<td>KNOTS</td>
<td>KNOTS</td>
<td>ACCEL G</td>
</tr>
<tr>
<td>+0.82</td>
<td>300</td>
<td>575</td>
<td>+1.0</td>
</tr>
<tr>
<td>+5.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Maximum roll rate is 30 deg/sec.
- Maximum employment is 0.59 Mach.
- After employment, the dispenser shall be released or jettisoned before landing.
- For additional information refer to Joint Munitions Effectiveness Manual (JMEM).

A

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Maximum crosswind component for takeoff or landing with a towed target is 15 knots
- 275 knots is permissible under non-turbulent flight conditions. Only gradual coordinated turns are permitted.
- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Only gradual coordinated turns are permitted.
- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- After tow cable is cut.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Maximum captive roll rate is 60 deg/sec.
- Targets can be scored through station 3 only.
- Two targets are not to be deployed or towed at the same time.
- Emergency jettison airspeed is 150 to 200 knots.

- Target launch or cable release.

B

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Maximum altitude for carriage with target set towed, in low, or no target set is 40,000 feet.
- Maximum roll rate with target set towed or no target set is 60 degrees/second.
- Maximum altitude for target set deployment/recovery is 25,000 feet; maximum altitude is 1,000 feet.
- Maneuvering during target set deployment/recovery is limited to 15 degree/sec roll rate not to exceed 30 degrees bank; no maneuvering is authorized when the target set is within 100 feet of aircraft.
- If visual augmentor becomes detached during towing, reduce airspeed below 200 KCAS. Target set recovery can be performed using minimum recovery limits, but should be done cautiously. Do not exceed 10 degree/sec roll rate: 135 degrees bank angle, and/or 17 units AOA.
- The tow rope may only be jettisoned with the cable/target set in-trail directly behind the low rope. The cable/target set should not be yanked relative to the aircraft.

C

- Minor configurations authorized; fuel tanks may be flown on empty stations 1, 2, 9, and 11.
- If visual augmentor accidentally deploys (comes out of bag), the pilot should limit airspeed to 250 KCAS and adhere to target deployment/recovery limits; pilot can land with visual augmentor deployed.
- Maximum altitude for carriage with target set towed, in low, or no target set is 40,000 feet.
- Maximum roll rate with target set towed or no target set is 60 degrees/second.
- Maximum altitude for target set deployment/recovery is 25,000 feet; maximum altitude is 1,000 feet.
- Maneuvering during target set deployment/recovery is limited to 15 degree/sec roll rate not to exceed 30 degrees bank; no maneuvering is authorized when the target set is within 100 feet of aircraft.
- If visual augmentor becomes detached during towing, reduce airspeed below 200 KCAS. Target set recovery can be performed using minimum recovery limits, but should be done cautiously. Do not exceed 10 degree/sec roll rate; 135 degrees bank angle, and/or 17 units AOA.
- The tow rope may only be jettisoned with the cable/target set in-trail directly behind the low rope. The cable/target set should not be yanked relative to the aircraft.

Figure 5-10 (Sheet 21 of 23)
Change 8
5-32C
External Stores Limitations

<table>
<thead>
<tr>
<th>Store/Description</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jetison 1G Level Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN/ASQ–T-11, T-13, T-17, T-20, T-21, T-25 AIS Pod (ACMI System) GROCUS Shot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pod Maximum Load–4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty MER</td>
<td>MAU–12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load–3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty TER</td>
<td>MAU–12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load–2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty Aero–3/8 or LAU–105 Launchers</td>
<td>MAU–12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN/AWQ–28 Pave Tack Pod Maximum Load –1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pave Tack Adapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Load–1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLU–107/B DURANDAL</td>
<td></td>
<td>600 0.95 15.0 4.0 175 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT–1210/AXU–14 ADL Pod Maximum Load –1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN/AQO–T1 Telemetry Pod Maximum Load–1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Missile Stations

<table>
<thead>
<tr>
<th>Missile Stations</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 21A of 23)
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>ACCEL G KNOTS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>A</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>B</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>D</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>E</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>G</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Remarks

- If gross weight is over 37,500 lbs, refer to Acceleration Limitations Chart.
- Maximum roll rate is 290 degrees.
- AIM-9 or AIM-7 not authorized when combined with AIS Pod. However, captive AIM-9 with inert rocket motor and AIM-7 Simulator Plug are authorized.
- Stores compatibility limit does not apply.
- Maximum roll rate is aircraft limits.
- Stores compatibility limit does not apply.
- Maximum roll rate is aircraft limits.
- Stores compatibility limit does not apply.
- (STA 2/8): One or two empty Aero-3/B launchers and spares may be carried in combination with any other contraband stores subject to the following restrictions:
 - Only one type of stores in addition to the launchers permitted on each aircraft station and the flight limitations of the two will be observed.
 - Fit clearance of at least one inch must exist between the launchers and the other stores mounted on the station.
 - Maximum roll rate is aircraft limits.
 - Stores compatibility limit does not apply.
- If gross weight is over 37,000 lbs, refer to Acceleration Limitations Chart.
- Maximum roll rate is 180 degrees (Adapter only is aircraft limit).
- Other stores cleared for carriage in TO 1F-4E-1 may be carried on empty stations except carriage of AIM-7 missiles on stations 4 or 8 is not authorized (Does not apply to adapter only.)
- OMAS equipped aircraft only.

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- Minimum interplane settings:
 - MRR = 0.140 sec. Ripple Single
 - MRR = 0.100 sec. Ripple Single and Ripple Pairs
 - Simultaneous release from TER and centerline MER is prohibited.
 - To allow sufficient clearance between tandem bombs or MER, the aft set of leg wells must be used on front bombs and the nose caps must be removed from the aft bombs (forward set of leg wells).
 - For TER carriage, the aft set of leg wells must be used.
- OMAS equipped aircraft.

- Mirror image is not authorized.
- (STA 3): Pod with simulator module (SM-862) and Missile Gone switch.
- Caps on stations 4, 6, 8, and 7.
- Maximum roll rate is 200 deg/sec.
- Only AIS pods with aft handle shortened are authorized for carriage on R2393 rail.
- AIM-8 or AIM-7 are not authorized when combined with pod. However, captive AIM-9 with inert rocket motor and AIM-7 Simulator Plug are authorized.
- Stores compatibility limit does not apply.
External Stores Limitations

Miscellaneous and Guided Bombs

<table>
<thead>
<tr>
<th>STORE</th>
<th>SUSPENSION</th>
<th>STATION LOADING</th>
<th>CARRIAGE</th>
<th>JETTISON 1G LEVEL FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MISSILE STATIONS</td>
<td>AIRSPEED</td>
<td>ACCEL G</td>
</tr>
<tr>
<td>AN/AVG-23</td>
<td>Missile Well Adapter</td>
<td>3 4 6 7</td>
<td>550 1.2 +6.0 +4.0</td>
<td>NA NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 1.2 +3.0 +2.4</td>
<td>NA NA</td>
</tr>
<tr>
<td>CTU-2/A</td>
<td>MER</td>
<td>3 4 6 7</td>
<td>400 0.95 +5.0 +4.0</td>
<td>NA NA</td>
</tr>
<tr>
<td>Supply Container</td>
<td></td>
<td></td>
<td>650 1.4 +3.0 +2.4</td>
<td>175 650</td>
</tr>
<tr>
<td>GBU-10/A, A/B, C/B D/E, E/B</td>
<td>MAU-12</td>
<td>3 4 6 7</td>
<td>550 0.95 +5.0 +4.0</td>
<td>175 650</td>
</tr>
<tr>
<td>(MK-84 LGB)</td>
<td></td>
<td></td>
<td>650 1.4 +3.0 +2.4</td>
<td>175 600</td>
</tr>
<tr>
<td>GBU-10G/B</td>
<td>MAU-12</td>
<td>3 4 6 7</td>
<td>550 0.95 +5.0 +4.0</td>
<td>175 650</td>
</tr>
<tr>
<td>H/S, J/B</td>
<td></td>
<td></td>
<td>650 0.38 +3.0 +2.4</td>
<td>200 550</td>
</tr>
<tr>
<td>(BLU-100)</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>with GBU-10</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>AIR/FL group</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>Maximum Load = 4</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>GBU-11A/B</td>
<td>MAU-12</td>
<td>3 4 6 7</td>
<td>650 0.95 +4.0 +3.0</td>
<td>200 550</td>
</tr>
<tr>
<td>(M118 LGB)</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>Maximum Load = 2</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>GBU-12/B, A/B, B/E, C/E, D/E</td>
<td>MAU-12</td>
<td>3 4 6 7</td>
<td>550 1.1 +6.0 +4.0</td>
<td>175 550</td>
</tr>
<tr>
<td>(MK-82 LGB)</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>High and Low Speed</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>GBU-50A/B</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>Maximum Load = 4</td>
<td></td>
<td></td>
<td></td>
<td>550 550</td>
</tr>
<tr>
<td>GBU-12B/B, C/E, D/E GBU-50A/B</td>
<td>TER</td>
<td></td>
<td>650 1.4 +5.0 +4.0</td>
<td>175 650</td>
</tr>
<tr>
<td>Maximum Load = 6</td>
<td></td>
<td></td>
<td></td>
<td>650 650</td>
</tr>
<tr>
<td>GBU-15(V)1/5</td>
<td>MAU-12</td>
<td></td>
<td>650 1.4 +5.0 +4.0</td>
<td>175 650</td>
</tr>
<tr>
<td>Long Cord Wing</td>
<td></td>
<td></td>
<td></td>
<td>150 600</td>
</tr>
<tr>
<td>Maximum Load = 2</td>
<td></td>
<td></td>
<td></td>
<td>150 600</td>
</tr>
<tr>
<td>GBU-15 R/DL</td>
<td></td>
<td></td>
<td>600</td>
<td>600 600</td>
</tr>
<tr>
<td>Short Cord Wing GBU-15 TV/DL</td>
<td></td>
<td></td>
<td></td>
<td>600 600</td>
</tr>
<tr>
<td>(MK-84)</td>
<td></td>
<td></td>
<td></td>
<td>600 600</td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 22 of 23)

5-34 Change 10
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
<td>MAX</td>
</tr>
<tr>
<td>ACCEL G KNOTS</td>
<td>KNOTS</td>
<td>ACCEL G KNOTS</td>
<td>ACCEL G KNOTS</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+1.0</td>
<td>300</td>
<td>400</td>
<td>Level</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+4.0</td>
<td>175</td>
<td>550</td>
<td>+45° to +45°</td>
</tr>
<tr>
<td>+3.0</td>
<td>175</td>
<td>650</td>
<td>-45° to -45°</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+4.0</td>
<td>175</td>
<td>550</td>
<td>+45° to +45°</td>
</tr>
<tr>
<td>+3.0</td>
<td>175</td>
<td>600</td>
<td>-45° to -45°</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+1.0</td>
<td>200</td>
<td>550</td>
<td>Level</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+5.0</td>
<td>175</td>
<td>550</td>
<td>+8° to +8°</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>+2.0</td>
<td>175</td>
<td>550</td>
<td>+6° to +35°</td>
</tr>
<tr>
<td>+3.0</td>
<td>175</td>
<td>575</td>
<td>-35° to -35°</td>
</tr>
<tr>
<td>+0.5</td>
<td>800</td>
<td>+10° to +45°</td>
<td>NA</td>
</tr>
<tr>
<td>+1.5</td>
<td>800</td>
<td>+45° to +45°</td>
<td>NA</td>
</tr>
</tbody>
</table>

- If gross weight is over 37,000 lbs, refer to Acceleration Limitations Chart.
- Pocket brakets not authorized on STA 8 when Dope Spike is loaded.
- Maximum roll rate with air open is 120 degrees below 550 KIAS and 90 degrees above 550 KIAS.
- WITH VISOR CLOSED – aipspeeds and roll rates are aircraft limits.

* Either forward MER Shoulder may be used
* Roll rate limit is 190 deg/sec.
* Release 500 feet ASL or higher for clump function
* Only 8 inch fins are to be used.

* If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
* Extended wing version of bomb will not fit in stations 1 and 9 due to interference between bomb wing and except wing.
* Landing with 1 bomb on the same wing is not recommended because the asymmetric moment exceeds that of one full external wing tank.
* Weight and balance of each aircraft loaded with one or two Guided Bombs must be examined for CG location during all possible takeoff and landing conditions.

* If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
* Landing with 2 bombs on the same wing is not recommended because the asymmetric moment exceeds that of one full external wing tank.
* Weight and balance of each aircraft loaded with one or more Guided Bombs must be examined for CG location during all possible takeoff and landing conditions.

* Weight and balance of each aircraft loaded with one or two Guided Bombs must be examined for CG location during all possible takeoff and landing conditions.
* Landing with one M118 LGD should be avoided. One M118 LGD on an inboard pylon may exceed forward CG limit at landing gross weight. Aircraft roll attitude during landing should be measured within plus or minus one degree, and the maximum recommended skid rate is 8 feet per second.
* Roll rate limit is 90 deg/sec.

* If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.

* If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
* DMAS equipped aircraft.
* For Asymmetric carriage, refer to Section VI, Flight with Asymmetric Loading, Subsonic and Supersonic maneuvering.
* Weight and balance of each aircraft loaded with one or more Guided Bombs must be examined for CG location during all possible takeoff and landing conditions.
* Maximum jettison and release limit is 1.0 Mach.

Figure 5-10 (Sheet 23 of 23)
External Stores Limitations

Guided Bombs

<table>
<thead>
<tr>
<th>Store</th>
<th>Suspension</th>
<th>Station Loading</th>
<th>Carriage</th>
<th>Jettison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Airspeed</td>
<td>Accel G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Knots</td>
<td>Mach</td>
</tr>
<tr>
<td>GBU-24/B (MK-84), A/9 (BLU-119)</td>
<td>MAU-12</td>
<td></td>
<td>600</td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum Load -4</td>
<td></td>
<td></td>
<td>550</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figure 5-10 (Sheet 23A of 23)
<table>
<thead>
<tr>
<th>EMPLOYMENT</th>
<th>RELEASE</th>
<th>DELIVERY ANGLE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>ACCEL G</td>
<td>KNOTS</td>
<td>KNOTS</td>
<td>ACCEL G</td>
</tr>
<tr>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>+4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3.0</td>
<td>175</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

- If gross weight is over 45,000 lbs, refer to Acceleration Limitations Chart.
- For asymmetric carriage, refer to Section VI.
- Flight with Asymmetric Loading Subsonic and Supersonic Maneuvering.
- Weight and balance of each aircraft loaded with one or two Guided Bombs must be examined for CG location during all possible takeoff and landing conditions.

Figure 5-10 (Sheet 23B of 23)
AIM-9 AIRSPEED LIMITATIONS

MK 8 MOD 0/1/2 WARHEAD ONLY

Note: THE MK 8 MOD 3 WARHEAD IS UNRESTRICTED.

INDICATED MACH NUMBER

ZONE I — NO RESTRICTIONS.
ZONE II — REPEATED EXCURSIONS OF NO MORE THAN 10 MINUTES EACH ARE PERMITTED.
ZONE III — REPEATED EXCURSIONS OF NO MORE THAN 5 MINUTES EACH ARE PERMITTED. INSPECTION OF WARHEADS IS RECOMMENDED AFTER EACH FLIGHT INVOLVING EXCURSIONS INTO ZONES II AND III.
ZONE IV — AVOID.

If limitations of zones II, III, and IV are violated, the warhead should be destroyed by jettisoning the missile if possible. Landings can be made with low order risk if jettisoning is not possible. These limitations do not apply to aircraft climb schedules, including maximum performance.

Figure 5-11
required.

Landing

Landing with asymmetric loads equivalent to one full external wing tank can be made. Recommended techniques are essentially the same as for crosswind operation. A straight-in pattern avoiding abrupt or accelerated maneuvers is recommended. To determine approach speed and AOA, establish the landing configuration and slow to a speed at which full aileron trim will hold wings level. This should result in 16 to 17 units AOA for an asymmetric load equivalent to one full external wing tank. A check for roll capability by applying additional aileron to pick up the heavy wing should be made. This AOA should be maintained during the approach and touchdown. An abrupt flare will cause a strong roll into the heavy wing. During landing roll, the aircraft may turn away from the heavy wing as brakes are applied. This can be controlled by rudder and nose gear steering.

Go-Around

If a go-around is necessary from an established final, abrupt stick movement should be avoided. Power should be advanced to military and the nose smoothly raised to the desired attitude. When no longer in a descent, the gear may be retracted; however, flap retraction should be delayed until at least 200 knots has been attained. Rudder and afterburner may be required to maintain wings level flight.

Maneuvering

During any maneuvering with asymmetric stores, expect a degradation of normal control response. This is most apparent at low subsonic or high supersonic speeds. Roll tendency increases significantly with increased G loading, especially for large load asymmetries. At some airspeeds/Mach numbers, roll authority with both aileron and rudder may be insufficient to counter the rolling moment developed by increased G load and an asymmetric store.

Use smooth control inputs when flying with an asymmetric load. With asymmetry equivalent to one full wing tank (maximum allowable) do not exceed 16 units AOA. Normal stall warning cues may be absent when maneuvering with an asymmetric load. At the first indication of a departure, immediately reduce AOA. If a departure occurs, spin entry is highly probable.

SUBSONIC MANEUVERING

Aircraft response with asymmetric stores at low subsonic speed and high G loading is characterized by a failure to respond in roll. This is caused by coupling of excessive aileron drag (adverse yaw) and an inability of the ailerons and spoilers to overcome the additional weight and momentum of an asymmetric load. In some flight conditions (low speed with large asymmetric load) it is possible to exceed the aerodynamic roll authority of the aircraft and a rapid departure will result. Departure may occur at an airspeed well above and an AOA well below the onset of normal buffet and stall cues. At the first indication of a deterioration of roll authority, reduce AOA and increase airspeed.

At high subsonic airspeed, high G loading and large asymmetry, the way to regain control of the aircraft once the roll has developed is to reduce the G loading thereby regaining aircraft roll authority over the asymmetric load. The maximum aircraft roll authority is attained at zero G.

SUPERSONIC MANEUVERING

At supersonic speed, roll control decreases with increasing Mach number. Roll authority is a function of Mach, dynamic pressure, aileron authority, asymmetric moment and store drag. Supersonic flight may result in inadequate roll authority to maintain wings level with an asymmetric load. As G is increased, aileron authority will decrease until the aircraft rolls off toward the store. The roll off will occur abruptly if G onset is rapid. If total loss of roll authority occurs with an asymmetric load at supersonic speed, reduce power, extend speed brakes, and unload as necessary to regain roll authority. Maximum roll authority is achieved at zero G. Since the rudder is ineffective in producing roll above 1.1 Mach, ailerons should be used to roll the aircraft above this speed. Extreme caution must be used in the transonic region. The abrupt increase in G loading experienced in the transition from supersonic to subsonic speed can lead to further degradation in roll authority and possible departure.

WARNING

For recovery from loss of roll authority at supersonic speed, reduce power, extend speed brakes, and perform an unloaded roll to the nearest horizon. When wings level, smoothly apply back stick to help decrease airspeed and minimize altitude loss. As speed decreases, additional roll authority will be available and G can be increased. Aileron into the heavy wing can result in an extremely high rate self-sustaining roll from which recovery may be impossible.

FLIGHT WITH ASYMMETRIC SLATS

Asymmetric slats produce roll, and therefore limit maneuvering capability. Roll-off is first experienced at 14 units AOA, and full cross-controllers will be required to maintain straight and level flight when reaching 19 units AOA. A symmetrical slat configuration (extended or retracted) is necessary for combat maneuvering.

STALLS

A stall, as discussed in the Flight Manual, is defined as a breakdown in directional stability (i.e., nose slicing). Characteristics normally experienced while approaching a stall include buffet onset, nose rise, and wing rock. These characteristics and the violence of the stall itself are dependent upon the external loading, CG location, and control technique. They are not entirely predictable or repeatable.
WARNING

The pilot should not depend upon wing rock, buffet, directional instability (nose slice), or any classic characteristics for a stall warning. In any configuration or loading, and especially with moderately high pitch change rates, it is possible to increase AOA above 30 units without wing rock or directional instability, at which time loss of control may result.

NOTE
Refer to section I for rudder pedal shaker and AOA aural tone operation.

CRUISE/COMBAT CONFIGURATION

1 G Stalls

Conventional stalls do not normally occur until well above 30 units AOA. Departures and/or engine stall/flameout can occur above 30 units AOA. Buffet is mild, and wing-rock will not normally occur below 30 units AOA. Pitch control is positive, and the AOA can be easily reduced by forward stick movement. Recovery, if initiated rapidly, is effected by positioning the stick forward (3–8 units AOA) and advancing the throttles to military power while maintaining ailerons and rudder neutral. Altitude loss can be minimized by applying maximum power, easing the stick forward momentarily to attain 21 to 25 units AOA, then stabilize AOA at 25 units. Also refer to Stall Characteristics chart (figure 6–4).

Roll Coupling

The F-4E, like all aircraft with a high fuselage loading design, is susceptible to roll coupling. This is a flight phenomenon where inertia and adverse aerodynamic effects of roll, pitch, or yaw can combine to exceed the stabilizing forces on the aircraft and cause divergence about one or all of these axes. A common method of encountering roll coupling is performing continuous full stick deflection aileron rolls. While rolling rapidly, the aircraft diverges slightly from roll about the longitudinal axis. If the roll is continued, forces can build which may cause the aircraft to rapidly transition to movement around the vertical axis. Because there is a high probability that roll coupling will occur under the above conditions; full deflection aileron rolls exceeding 360° are prohibited. The higher the AOA during the roll, the quicker the aircraft can be adversely affected by roll coupling. It is possible to aggravate the effects of roll coupling by adding pitch and yaw inputs to the aircraft while rolling rapidly. Under certain conditions this can cause the aircraft to depart without stall warning. Aircraft susceptibility to roll coupling is increased with aft center of gravity, with centerline stores loaded, and with absence of wing mounted stores. Out-of-Control Recovery procedures in Section 3 should be used to recover if the aircraft departs under these conditions.

Accelerated Stalls

Accelerated stalls produce only mild to moderate buffet. Wing-rock normally does not occur below 25 units AOA, and often does not occur until reaching 28–30 units AOA. Departures which occur above 30 units tend to be gentle, and are predominantly roll rather than yaw. Normal recoveries are positive. Prompt neutralization of controls will generally effect recovery from accelerated stall approaches. Control of angle of attack with stick position is of paramount importance to effect recovery from the stall. Oscillations in roll and yaw which may be present during recovery should be allowed to damp themselves out and should not be countered with aileron or rudder.

WARNING

- The use of aileron or excessive rudder when approaching either a 1 G or accelerated stall condition will produce yaw and increase AOA. This increases the probability of loss of control. Left stick produces a right yaw, and right stick produces a left yaw.
- If slats are not programming properly, 25 units AOA will result in an immediate departure. If slats do not extend or buffet occurs below 19 units AOA, do not exceed 19.2 units AOA.

Negative G Stalls

A negative G (inverted) stall can be entered with abrupt application of forward stick and is indicated by 0 AOA. Light to moderate buffet will occur at the stall and there are no distinct yaw or roll tendencies. Recovery from the negative G stall is effected by relaxing the forward stick pressure and maintaining AOA between 3 to 8 units until recovered.

Landing Configuration Stalls

Stall approaches in the landing configuration are safe, with satisfactory control over all axes up to 26 to 28 units angle of attack. In the landing configuration, the aircraft will generally stall at higher AOA than in the cruise configuration. Above 26 units AOA, the increase in stick forces serves to reduce the potential for inadvertent stalls. Approaching the stall, the airplane exhibits a slight nose rise (a reduction in the stick force required to hold pitch attitude). The magnitude of this stick force lightening is a function of the center of gravity position (aft CG gives lighter forces). Stick force lightening occurs between 23 and 25 units AOA. Wing rock usually increases in intensity as angle of attack is increased, but seldom exceeds 40° bank angle at the stall. If bank angles in excess of 30° or nose sluicing are experienced, the stall approach should be discontinued. Moderate buffet and wing rock will occur above 26 to 28 units AOA. Recovery is effected by advancing the throttles to MAX AB and placing the stick forward to attain and maintain ON SPEED AOA. If altitude is critical, 21 to 25 units AOA will result in minimum altitude loss.

WARNING

Do not depend on the wing rock or buffet for natural stall warning. In any configuration or loading, it is possible to exceed 30 units AOA without any wing rock or buffet, at which time loss of control may result. Loss of at least 3000 feet altitude should be anticipated.
STALL CHARACTERISTICS

ALTITUDES
10,000 FEET AND BELOW
POWER FOR LEVEL FLIGHT
Rudder Pedal Shaker
Gear Down, Flaps Down, Slats Out
22.3 Units Angle of Attack
Onset of Weak Nose Slicing/Wing Rock
Gear and Flaps Retracted, Slats Out
27 Units Angle of Attack
Onset of Weak Nose Slicing/Wing Rock
Gear Down, Flaps Down, Slats Out
27 Units Angle of Attack
Cockpit Indicator Maximum
Gear and Flaps Retracted, Slats Out
30 Units Angle of Attack
Cockpit Indicator Maximum
Gear Down, Flaps Down, Slats Out
30 Units Angle of Attack
EXAMPLE
Flaps Down, Gear Down, Slat Out
A. Gross Weight = 38,000 Pounds
B. Stall Reflector Line
C. Stall Speed = 124 KIAS
D. Bank Angle = 45°
E. Stall Speed = 149 KIAS

Figure 6-4

4E-1-(58)A
shut down. An aircraft flight should not be aborted for failure of a generator to come on or stay on the line prior to engine/oil warm-up nor should an abort be declared if an engine shut-down and restart will bring and keep a generator on the line. Starts using alternate fuels (JP-5, JP-8, JET A, or JET A-1) will require longer to accelerate to idle rpm. The degradation in acceleration time becomes progressively more pronounced as temperature decreases. Starts at sub-zero temperatures using kerosene base fuels may require up to 75 seconds longer than with JP-4. Rpm increase after light-off may be particularly slow when making cartridge mode starts. Starts should not be discontinued prematurely due to slow acceleration or temporary rpm stagnation. Temporary stagnation at settings below idle rpm is acceptable for periods up to 30 seconds provided permissible EGT limits are not exceeded.

CAUTION

Ensure that GEN OUT and BUS TIE OPEN lights go out. The maximum amount of time that the engine can run at 100 psi oil pressure before discontinuing the start is 2 minutes when the temperature is below -18°C (0°F) and 4 minutes when the temperature is below -35°C.

NOTE

In extremely cold weather, the throttle linkage is very stiff and both hands may be required to move the throttles out of the OFF position.

WARM-UP AND GROUND CHECK

When checking the flight controls, lateral stick movement will be extremely stiff. Slowly cycle the control stick until full lateral stick throw is available. Repeated control cycling will alleviate the stiffness somewhat, but normal system feel may not return until after approximately 1 hour of system operation. Before takeoff, assure all instruments are allowed an adequate warm-up period and are operating normally.

CAUTION

- During engine ground operation when icing conditions are present, rapid throttle movement with possible ice accumulation in the compressor could result in a stall. Do not operate below 82% rpm for more than 5 minutes. Operate at MIL for at least 30 seconds for each period below 82% rpm.
- Cold weather operation (below 40°F) contributes to AVTR head clogging. Before engine start load cassette leaving cassette door open allowing cockpit heaters to heat AVTR. Turn AVTR to STBY. Close AVTR door prior to take off.

TAXIING

Avoid taxiing in deep or rutted snow since frozen brakes will likely result. Also, increase space between aircraft while taxiing at sub-freezing temperatures, to insure safe stopping distance and to prevent icing of aircraft surfaces by melted snow and ice blown by the jet blast of a preceding aircraft.

BEFORE TAKEOFF

The thrust developed by the engine in low temperature is noticeably greater and brake demands will be greater to hold position; however, when operating with maximum engine compressor bleed air (cockpit pressurized) in outside air temperatures of -37°C and below, rapid throttle bursts may result in an rpm hang-up. If engine icing conditions are anticipated, place the engine anti-ice switch in the DE-ICE position and place the pitot heat switch ON.

NOTE

When operating under extremely low temperatures (approximately -40°C or below), RPM hang-up, cyclic afterburner operation, or engine flameout may be experienced.

TAKEOFF

NOTE

- When operating from runways which are covered with excessive water, snow or slush, high-speed aborts may result in engine flame-out due to precipitation ingestion. The probability of flame-out is highest when throttles are chopped from afterburner to IDLE at speeds above 100 knots. With a double flame-out, normal braking, anti-skid protection, and nose gear steering will be lost. After takeoff from runways covered with snow or slush, packed snow/slush in the auxiliary air door area may make throttle movement difficult until the snow/slush can be melted.
- If inflight freezing within the longitudinal control system is experienced, excessive stick forces may be required to move the control stick. Normal airplane control is available but requires higher initial force inputs. Normal control forces should return at lower (warmer) altitudes.

AFTER LANDING

When wearing bulky arctic survival clothing and winter flying gloves, rapid egress from the cockpit by disconnecting the torso harness will be impeded due to the inability to see the connectors and by a degraded sense of touch. During operations where the temperature is below freezing with heavy rain, or expected to drop below freezing with heavy rain, the aircraft should be parked with wings spread.

BEFORE LEAVING AIRCRAFT

Leave canopy open, unless weather prevents, to permit circulation. This helps prevent canopy cracking from differential cooling and decreases windshield and canopy frosting. Also check that all protective covers are installed.
HOT WEATHER PROCEDURES

PREVENT SAND OR DIRT FROM DAMAGING ENGINE.

Do not attempt takeoff or engine operation in a sand storm or dust storm, if avoidable. Park aircraft crosswind and shut down engine to prevent sand or dirt from damaging engine.

TURBULENCE AND THUNDERSTORMS

WARNING

The following factors, singly or in combination, could cause engine flame-outs:

- Penetration of cumulus build-ups with associated high moisture content.
- Engine icing of either nose cowl or inlet guide vanes.
- Turbulence associated with penetration can result in extreme angles of attack which may cause marginal engine performance.
- Above 40,000 feet, the surge margin of the engine is reduced and there is poor air distribution across the face of the compressor.
- In view of the above, the pilot should avoid areas of turbulent air, hail storms, or thunderstorms, whenever possible, because of the increased danger of engine flame-out. If these areas cannot be avoided, the engine anti-icing system should be turned on prior to weather penetration. EGT gauges should be monitored continuously during weather penetration. A rise in EGT is an indication of engine icing. The engine anti-icing systems prevent the formation of ice and is not a de-icer. Whenever possible, icing conditions should be anticipated in advance and the anti-icing system should be turned on to warm up the engine air inlet.

PENETRATION

The aircraft is exceptionally stable and comparatively easy to control in the severe turbulence; however, the effects of turbulence becomes noticeably more abrupt and uncomfortable at airspeeds above optimum cruise and below 35,000 feet. The aircraft is not displaced significantly from the intended flight path and desired heading. Attitude can be maintained with reasonable accuracy.

PENETRATION AIRSPEED

The optimum thunderstorm penetration speed is 300 knots. Afterburner may be necessary to maintain this airspeed above 35,000 feet.

NOTE

Optimum thunderstorm penetration airspeed is a compromise between pilot comfort, controllability, structural stress (due to gust loads and impact precipitation), and engine inlet air distortion. At high airspeeds, aircrew discomfort and structural stress are greater. At slow speeds, controllability is somewhat sacrificed and inlet airflow distortion (due to turbulence) may induce compressor stalls and/or engine flameout.

APPROACHING THE STORM

If storm cannot be seen, it may be located by use of radar. Establish the recommended penetration airspeed and perform or check the following:

1. Adjust throttle to maintain desired penetration speed.
2. Pitot heat switch – CHECK ON
3. Engine anti-icing switch – DE-ICE
4. Autopilot – OFF
5. Lower seat
6. Inertia reel – MANUALLY LOCK

If night penetration –

7. White floodlights – ON
8. Instrument lights – FULL BRIGHT
9. Console lights – FULL BRIGHT

CAUTION

Do not try to top thunderstorms at subsonic speeds above 40,000 feet. The stall margin of both the airframe and engines becomes critical in this region. Flight through a thunderstorm at the proper airspeeds is much more advantageous than floundering into the storm at a dangerously
AIRPLANE LOADING

WARNING

For precise airplane basic weight, external store and attachment information, refer to charts C and D of the weight and balance data handbook TO 1F-4E-400 for the particular airplane.

<table>
<thead>
<tr>
<th>Suspension Equipment</th>
<th>Weight Per Station</th>
<th>Drag Per Station</th>
<th>Stability Index Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerline mer adapter and swaybrace adapters</td>
<td>71</td>
<td>3.8</td>
<td>N.A.</td>
</tr>
<tr>
<td>Centerline mer with adapter</td>
<td>270</td>
<td>10.0</td>
<td>N.A.</td>
</tr>
<tr>
<td>Inboard armament pylon</td>
<td>264</td>
<td>2.8</td>
<td>6.9</td>
</tr>
<tr>
<td>Inboard armament pylon and ter</td>
<td>359</td>
<td>6.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Inboard armament pylon and two Aero-38 or LAU-105 missile launchers</td>
<td>374</td>
<td>3.4</td>
<td>9.1</td>
</tr>
<tr>
<td>Inboard armament pylon and LAU-34/A missile launcher</td>
<td>350</td>
<td>4.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Inboard armament pylon and LAU-38/A, A/A launcher</td>
<td>740</td>
<td>13.7</td>
<td>21.5</td>
</tr>
<tr>
<td>Inboard armament pylon and LAU-117 launcher</td>
<td>399</td>
<td>9.6</td>
<td>13.9</td>
</tr>
<tr>
<td>Inboard armament pylon and LAU-118 launcher</td>
<td>367</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Special weapons adapter</td>
<td>86</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Outboard armament pylon</td>
<td>190</td>
<td>2.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Outboard armament pylon and outboard mer</td>
<td>410</td>
<td>10.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Outboard armament pylon and LAU-34/A missile launcher</td>
<td>276</td>
<td>3.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Pave tack adapter</td>
<td>78</td>
<td>1.5</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Notes: Armament pylon weights are based on MAU-128/A. For MAU-129/A, add 3 pounds.
<table>
<thead>
<tr>
<th>STORE</th>
<th>WEIGHT PER STORE (POUNDS)</th>
<th>DRAG PER STORE</th>
<th>UNIT STABILITY NUMBER</th>
<th>CLUSTER MOUNTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>WING TANK AND PYLON</td>
<td>F-271 E-309</td>
<td>6.4</td>
<td>SEE BELOW</td>
<td>20.0</td>
</tr>
<tr>
<td>WITHOUT INBOARD STORES OR PYLONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH INBOARD STORE AND/OR PYLON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH INBOARD LAU-88 LAUNCHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 GAL HIGH PERFORMANCE CENTER LINE TANK</td>
<td>F-4244 E-338</td>
<td>9.6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ROYAL JET 600-GAL EXT TANK</td>
<td>F-4208 E-360</td>
<td>9.6</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>A/A 37U-15 TOW TARGET SYSTEM (WITH CABLE AND TARGET)</td>
<td>674(983)</td>
<td>14.3(45.8)</td>
<td>7.0</td>
<td>NA</td>
</tr>
<tr>
<td>A/A 37U-33 AERIAL GUNNERY TARGET SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* AN/RRK-33/A TOWING SET</td>
<td>367</td>
<td>5.0</td>
<td>8.0</td>
<td>NA</td>
</tr>
<tr>
<td>W/TARGET DEPLOYED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* AN/TDK-36/A TARGET SET</td>
<td>107</td>
<td>2.0</td>
<td>3.0</td>
<td>NA</td>
</tr>
<tr>
<td>A/A 37U-36 (W/ FULL/LESS TGT/LESS TGT and CABLE)</td>
<td>902/745/495</td>
<td>27(35) TOWED</td>
<td>8.0(6.5) TOWED</td>
<td>9.0(7.5) TOWED</td>
</tr>
<tr>
<td>AGM-45 OR ATM-45 TRAINING MISSILE</td>
<td>395</td>
<td>2.3</td>
<td>2.7</td>
<td>NA</td>
</tr>
<tr>
<td>AGM-55 OR TGM-65 TRAINING MISSILE</td>
<td>464</td>
<td>2.8</td>
<td>17.6</td>
<td>23.5</td>
</tr>
<tr>
<td>AIM-7E, AND AIM-7E WITH AN/AWM-18-7F MISSILE</td>
<td>435, 510</td>
<td>1.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>AIM-9 (BASIC, -1 CONFIGURATION) MISSILE</td>
<td>186</td>
<td>1.3</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>AIM-91 (-2, -3 CONFIGURATION) MISSILE</td>
<td>178</td>
<td>1.3</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>AN/ASQ-1-13</td>
<td>180</td>
<td>1.3</td>
<td>1.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALE-38 CHAFF DISPENSER</td>
<td>F-470 E-212</td>
<td>4.0</td>
<td>21.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALE-40 DISPENSER (MASTER AND SLAVE)</td>
<td>F-67 E-45</td>
<td>2.8</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-101(V)-10</td>
<td>540</td>
<td>WING-2.5</td>
<td>5.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-113(V)-15, (V)-17</td>
<td>580.406</td>
<td>WING-2.5</td>
<td>12.2</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-131(V)-4, -5, -6</td>
<td>659</td>
<td>WING-4.5</td>
<td>35.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-131(V)-5, -10</td>
<td>659</td>
<td>WING-4.5</td>
<td>35.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-131(V)-13</td>
<td>574</td>
<td>WING-4.5</td>
<td>35.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-131(V)-12, -14</td>
<td>674/714</td>
<td>WING-4.5</td>
<td>35.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-131(V)-15</td>
<td>616</td>
<td>WING-4.5</td>
<td>35.0</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-176</td>
<td>247</td>
<td>WING-2.0</td>
<td>4.4</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-184(V)-1, -2</td>
<td>641/474</td>
<td>WING-2.5</td>
<td>12.2</td>
<td>NA</td>
</tr>
<tr>
<td>ALQ-188</td>
<td>300</td>
<td>4.0</td>
<td>4.1</td>
<td>NA</td>
</tr>
<tr>
<td>AN/ASQ T-17, -20, -21, -25</td>
<td>122</td>
<td>1.3</td>
<td>1.0</td>
<td>NA</td>
</tr>
</tbody>
</table>

F - FULL
E - EMPTY
NA - NOT APPLICABLE
NE - NOT ESTABLISHED
* FOR FUSELAGE MOUNTED PODS, ADD 57 POUNDS FOR ADAPTER.

Figure A1-1 (Sheet 2 of 4)

A1-6 Change 10
<table>
<thead>
<tr>
<th>STORE</th>
<th>WEIGHT PER STORE (LBS)</th>
<th>DRAG PER STORE</th>
<th>UNIT STABILITY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORC 60-010V1-3, 4</td>
<td>599/439</td>
<td>WING-2.5 FUS-1.7</td>
<td>12.2 NA</td>
</tr>
<tr>
<td>943 SPECIAL STORE WITH MOD 0 NOSE/BDU-8 (SHORT NOSE) PRAC. BMB</td>
<td>2000</td>
<td>4.1</td>
<td>9.2 NA</td>
</tr>
<tr>
<td>943 SPECIAL STORE WITH MOD 1 NOSE/BDU-8 (LONG NOSE) PRAC. BMB</td>
<td>2095</td>
<td>4.1</td>
<td>9.2 NA</td>
</tr>
<tr>
<td>857 SPECIAL STORE/BDU-12 PRACTICE BOMB</td>
<td>710</td>
<td>2.2</td>
<td>4.9 NA</td>
</tr>
<tr>
<td>811 SPECIAL STORE/BDU-38 PRACTICE BOMB</td>
<td>23</td>
<td>0.2</td>
<td>0.6 0.8</td>
</tr>
<tr>
<td>BLU-52 BOMB</td>
<td>360</td>
<td>3.8</td>
<td>10.7 14.3</td>
</tr>
<tr>
<td>BLU-107/9 (DURANDAL)</td>
<td>180</td>
<td>1.1</td>
<td>2.8 3.7</td>
</tr>
<tr>
<td>BLU-109 WITH MK-84 CONICAL FIN</td>
<td>2020</td>
<td>3.4</td>
<td>7.2 NA</td>
</tr>
<tr>
<td>BL-755 BOMB</td>
<td>610</td>
<td>4.4</td>
<td>7.8 10.4</td>
</tr>
<tr>
<td>CBU-7 DISPENSER (UNFINNED)</td>
<td>F-822 E-188</td>
<td>F-4.4 E-6.9</td>
<td>13.0 13.0</td>
</tr>
<tr>
<td>CBU-12A, A/A DISPENSER</td>
<td>850, 557</td>
<td>3.3</td>
<td>10.0 13.0</td>
</tr>
<tr>
<td>CBU-24 DISPENSER</td>
<td>829</td>
<td>4.2</td>
<td>7.4 9.8</td>
</tr>
<tr>
<td>CBU-30 DISPENSER (UNFINNED)</td>
<td>F-305 E-188</td>
<td>F-4.4 E-6.9</td>
<td>13.0 13.0</td>
</tr>
<tr>
<td>CBU-38 DISPENSER (UNFINNED)</td>
<td>F-704 E-188</td>
<td>F-4.4 E-6.9</td>
<td>13.0 13.0</td>
</tr>
<tr>
<td>CBU-48 DISPENSER</td>
<td>F-888 E-185</td>
<td>3.3</td>
<td>10.0 13.3</td>
</tr>
<tr>
<td>CBU-49 DISPENSER</td>
<td>939</td>
<td>4.5</td>
<td>7.4 9.9</td>
</tr>
<tr>
<td>CBU-52 DISPENSER</td>
<td>785</td>
<td>4.6</td>
<td>7.4 9.8</td>
</tr>
<tr>
<td>CBU-55A, -71 DISPENSER</td>
<td>800</td>
<td>4.6</td>
<td>7.4 9.9</td>
</tr>
<tr>
<td>CBU-87/B</td>
<td>890</td>
<td>5.0</td>
<td>8.9 10.0</td>
</tr>
<tr>
<td>CBU-89/3 GATOR MINE</td>
<td>800</td>
<td>6.0</td>
<td>8.0 10.0</td>
</tr>
<tr>
<td>COMBAT DOCUMENTATION CAMERAS</td>
<td>15</td>
<td>3.7 (PAIR)</td>
<td>NA NA</td>
</tr>
<tr>
<td>GBU-10 (MK-84) LASER GUIDED BOMB</td>
<td>2052</td>
<td>6.3</td>
<td>26.2 NA</td>
</tr>
<tr>
<td>GBU-10 (BLU-100)</td>
<td>2081</td>
<td>6.3</td>
<td>26.2 NA</td>
</tr>
<tr>
<td>GBU-11 (MK118 LASER GUIDED BOMB)</td>
<td>3096</td>
<td>8.2</td>
<td>54.0 NA</td>
</tr>
<tr>
<td>GBU-12A, A/B, (MK-82 LASER GUIDED BOMB) OR BDU-50A/B PRACTICE BOMB</td>
<td>HIGH SPEED FIN</td>
<td>620</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>LOW SPEED FIN</td>
<td>620</td>
<td>2.0</td>
</tr>
<tr>
<td>GBU-12A/B, C/B, D/B (MK-82 GB) OR BDU-50A/B PRACTICE BOMB</td>
<td>2515</td>
<td>10.0</td>
<td>55.0 NA</td>
</tr>
<tr>
<td>GBU-15 (VTV)</td>
<td>2472</td>
<td>10.0</td>
<td>55.0 NA</td>
</tr>
<tr>
<td>GBU-15 TV SHORT CORD WING (MK-84)</td>
<td>2426</td>
<td>10.0</td>
<td>55.0 NA</td>
</tr>
<tr>
<td>GBU-24/B, A/B LOW LEVEL LGB</td>
<td>2306</td>
<td>6.3</td>
<td>26.2 NA</td>
</tr>
<tr>
<td>GRDCUS (SHOOTER POD)</td>
<td>125</td>
<td>1.3</td>
<td>1.0 NA</td>
</tr>
<tr>
<td>AN/AQX-14 AIRCRAFT DATA LINK POD</td>
<td>435</td>
<td>3.4</td>
<td>NA NA</td>
</tr>
<tr>
<td>LAU-3/A ROCKET POD</td>
<td>WITH NOSE AND TAIL CONE</td>
<td>495</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>WITHOUT NOSE AND TAIL CONE (EMPTY)</td>
<td>70</td>
<td>5.8</td>
</tr>
<tr>
<td>LAU-86 ROCKET POD</td>
<td>WITH NOSE AND TAIL CONE</td>
<td>191</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>WITHOUT NOSE AND TAIL CONE (EMPTY)</td>
<td>67</td>
<td>2.5</td>
</tr>
<tr>
<td>LAU-131 ROCKET POD</td>
<td>WITH NOSE CONE</td>
<td>226</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>WITHOUT NOSE CONE (EMPTY)</td>
<td>68</td>
<td>2.5</td>
</tr>
</tbody>
</table>

F - FULL
E - EMPTY
NA - NOT APPLICABLE
NE - NOT ESTABLISHED

Figure A1-1 (Sheet 8 of 4)
<table>
<thead>
<tr>
<th>STORE</th>
<th>WEIGHT PER STORE (POUNDS)</th>
<th>DRAG PER STORE</th>
<th>UNIT STABILITY NUMBER SINGLE MOUNTED</th>
<th>UNIT STABILITY NUMBER CLUSTER MOUNTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>M36E2 INCENDIARY CLUSTER BOMB</td>
<td>F-928 E-880</td>
<td>4.2</td>
<td>8.4</td>
<td>11.2</td>
</tr>
<tr>
<td>M117 GENERAL PURPOSE BOMB WITH MAU-183/A/B FIN</td>
<td>812</td>
<td>3.2</td>
<td>7.5</td>
<td>10.0</td>
</tr>
<tr>
<td>M117R (RETRACTED) GENERAL PURPOSE BOMB OR M117D (DESTRUCTOR)</td>
<td>880</td>
<td>4.2</td>
<td>7.5</td>
<td>10.0</td>
</tr>
<tr>
<td>M118 GENERAL PURPOSE BOMB</td>
<td>3020</td>
<td>10.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>M129E1, M129E2 LEAFLET BOMBS/MJU-1 CHAFF BOMB</td>
<td>206/305</td>
<td>3.0</td>
<td>7.3</td>
<td>8.7</td>
</tr>
<tr>
<td>MATRA 250 KG BOMBS (UNRETRACTED)</td>
<td>FR-565 GER-523</td>
<td>4.4</td>
<td>4.2</td>
<td>5.5</td>
</tr>
<tr>
<td>MG-1 GAS BOMB</td>
<td>740</td>
<td>3.0</td>
<td>7.3</td>
<td>9.7</td>
</tr>
<tr>
<td>MK-20 ROCKEYE II</td>
<td>460</td>
<td>2.9</td>
<td>7.2</td>
<td>9.6</td>
</tr>
<tr>
<td>MG-36 DESTRUCTOR</td>
<td>550</td>
<td>2.4</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td>MK-81 GENERAL PURPOSE BOMB</td>
<td>270</td>
<td>0.8</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>MK-82 GENERAL PURPOSE BOMB OR BDU-50/B, A/B PRACTICE BOMB</td>
<td>610</td>
<td>1.1</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td>MK-82 SHAKEYE 1 BOMB</td>
<td>650</td>
<td>2.4</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td>MK-82/BDU-40/B (AIR INFLATABLE RETARDER)</td>
<td>528</td>
<td>1.3</td>
<td>2.8</td>
<td>3.7</td>
</tr>
<tr>
<td>MK-83 GENERAL PURPOSE BOMB</td>
<td>965</td>
<td>1.8</td>
<td>4.6</td>
<td>6.1</td>
</tr>
<tr>
<td>MK-84 GENERAL PURPOSE BOMB</td>
<td>1970</td>
<td>3.4</td>
<td>7.2</td>
<td>NA</td>
</tr>
<tr>
<td>MK-84/BDU-50/B (N/A INFLATABLE RETARDER)</td>
<td>2008</td>
<td>3.4</td>
<td>7.2</td>
<td>NA</td>
</tr>
<tr>
<td>MU-648 CARGO PODS</td>
<td>E-130</td>
<td>3.4</td>
<td>14.0</td>
<td>NA</td>
</tr>
<tr>
<td>NOSE GUN AMMO (639 ROUNDS PRIOR TO FIRING/AFTER FIRING)</td>
<td>373/169</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PAVE SPIKE POD (AN/AVQ-23)</td>
<td>479</td>
<td>**</td>
<td>1.3</td>
<td>N/A</td>
</tr>
<tr>
<td>PAVE TACK POD (AN/AVQ-26)</td>
<td>1217</td>
<td>**</td>
<td>28.5</td>
<td>N/A</td>
</tr>
<tr>
<td>PAVE TACK ADAPTER</td>
<td>78</td>
<td></td>
<td>1.6</td>
<td>N/A</td>
</tr>
<tr>
<td>RMK-18 REEL LAUNCHER WITH TDU-22 TARGET & TOW CABLE (TARGET DEPLOYED)</td>
<td>1866</td>
<td>15.0 (30.0)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>16 GUN POD (59 ROUNDS AMMO)</td>
<td>1043/1693</td>
<td>8.1</td>
<td>26.4</td>
<td>N/A</td>
</tr>
<tr>
<td>SUU-20/A/A, A/A, A/M, B/A PRACTICE BOMB AND ROCKET DISPENSER W/SIX BDU-23</td>
<td>F-378, 468, 468, 414</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SUU-21 PRACTICE BOMB DISPENSER WITH SIX BDU-33</td>
<td>F-593 E-460</td>
<td>3.3</td>
<td>11.9</td>
<td>N/A</td>
</tr>
<tr>
<td>SUU-21 PRACTICE BOMB DISPENSER WITH SIX MK-106</td>
<td>F-490 E-460</td>
<td>3.3</td>
<td>11.8</td>
<td>N/A</td>
</tr>
<tr>
<td>SUU-23 GUN POD (59 ROUNDS AMMO)(FULLY LOADED)</td>
<td>1072/1722</td>
<td>8.1</td>
<td>26.4</td>
<td>N/A</td>
</tr>
<tr>
<td>GPU-5A GUN POD (FULL) (EMPTY) (FIRED OUT)</td>
<td>1865/1723/1393</td>
<td>8.7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SUU-26 B/A, C/A, C/A, E/A FLARE DISPENSER</td>
<td>E-161, 264, 264</td>
<td>4.0</td>
<td>8.0</td>
<td>10.6</td>
</tr>
<tr>
<td>TISEO SCOPE HOUSING (LEFT WING)</td>
<td>NE</td>
<td>5.8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TMI-28 SPRAY TANK</td>
<td>F-1935 E-507</td>
<td>4.9</td>
<td>27.5</td>
<td>N/A</td>
</tr>
<tr>
<td>CTU-2/A SUPPLY CONTAINER</td>
<td>213</td>
<td>4.9</td>
<td>11.8</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N A - NOT APPLICABLE
N E - NOT ESTABLISHED
F - FULL
E - EMPTY
* TOTAL CARGO WEIGHT SHALL AT NO TIME EXCEED 300 POUNDS.
** THIS INCLUDES 57 POUNDS FOR ECM ADAPTER.

Figure A1-1 (Sheet 4 of 4)
GLOSSARY

A

AC – Aerodynamic center
ACM – Air Combat Maneuvering
ac – Alternating current
ACU – Avionics Computer Unit
ADCS – Air Data Computer Set
ADI – Attitude Director Indicator
APC – Automatic Frequency Control
AFCS – Automatic Flight Control System
AGC – Automatic Gain Control
AHRS – Attitude Heading Reference System
AIU – Avionics Interface Unit
AJB – Airborne, Electro-Mechanical, Bombing
AOA – Angle of Attack
APA – Airborne, Radar, Auxiliary Assembly
APN – Airborne, Radar, Navigational Aid
APQ – Airborne, Radar, Special Purpose
APU – Auxiliary Power Unit
AR – Air Refueling
ARI – Aileron Rudder Interconnect
ARC – Airborne, Radio, Control
ASA – Airborne, Special Type, Auxiliary Assembly
ASE – Allowable Steering Error
ASN – Airborne, Special Type, Navigational Aid
ASQ – Airborne, Special Type, Combination of Purposes
AVTR – Airborne Video Tape Recorder
AWW – Airborne, Armament, Control

B

BATH – Best Available True Heading (Alignment)
BDHI – Bearing Distance Heading Indicator
BIT – Built-In-Test
BST – Boresight

C

CAA – Computer Automatic Acquisition
CADC – Central Air Data Computer
CAP – Combat Air Patrol
CARA – Combined Altitude Radar Altimeter
CAS – Calibrated Airspeed
CDU – Control Display Unit
CG – Center of Gravity
CIT – Compressor Inlet Temperature
CMPT – Computer
CNI – Communication Navigation Identification
CSD – Constant Speed Drive

dc – Direct current
DCU – Douglas Control Unit
DMAS – Digital Modular Avionics System
DME – Distance Measuring Equipment
DR – Dead Reckoning
DSCG – Digital Scan Converter Group (Radar type)
DTC – Data Transfer Cartridge
DTU – Data Transfer Unit
DTS – Data Transfer Set
DVST – Direct View Storage Tube (Radar type)

E

EAS – Equivalent Airspeed
ECM – Electronic Countermeasure(s)
EGT – Exhaust Gas Temperature

F

FD – Flight Director
FL – Flight Level
FSK – Function Select Key (CDU)
GLOSSARY (CONT)

G
G - Gravity
GC - Gyro Compass (Alignment)
GCA - Ground Control Approach
GCI - Ground Control Intercept
gpm - Gallon per minute

H
Hangfire - A delay or failure of an article of ordnance after being triggered
Hang Start - A start that results in a stagnated rpm and temperature
Hot Start - A start that exceeds normal starting temperatures
HSI - Horizontal Situation Indicator
Hz - Hertz

I
IAS - Indicated Airspeed
IFF - Identification Friend or Foe
IFR - Instrument Flight Rules
ILS - Instrument Landing System
IMC - Instrument Meteorological Conditions
INS - Inertial Navigation System
INU - Inertial Navigation Unit
IP - Identification Point
I/P - Identification of Position
IR - Infrared

J
JP - Jet Propulsion

K
KTS - Knots

L
LABS - Low Altitude Bombing System
LCOSS - Lead Computing Optical Sight
LE - Leading Edge

LOX - Liquid Oxygen
Lpm - Liters per minute
LRU - Line Replaceable Unit

M
MAC - Mean Aerodynamic Chord
MIL - Military
Missfire - A permanent failure of an article of ordnance being triggered
MSDG - Multiple Sensor Display Group
MSL - Mean Sea Level

N
N/A - Not applicable
NAV - Navigate
N/E - Not established
NFSP - Navigation Function Select Panel
NMPP - Nautical Miles Per Pound
NWDS - Navigation Weapon Delivery System

O
OAT - Outside Air Temperature
OPP - Operational Flight Program
OV - Overfly Update

P
P - Pilot
PC - Power Control
PDVL - Pull Down Vent Line
PLB - Personnel locator beacon
prf - Pulse repetition frequency
psi - Pounds per square inch

Q
q - Dynamic Pressure, psf
GLOSSARY (CONT)

R
RADAR — Radio Detection and Ranging
RER — Radial Error Rate
rf — Radio Frequency
rpm — Revolutions Per Minute
RWR — Radar Warning Receiver

S
SC — Sensor Control Display (CDU Display)
SCADC — Standard Central Air Data Computer
SH — Stored Heading (Alignment)
SID — Standard Instrument Departure
SPC — Static Pressure Compensator
SRP — Sensor Reference Point

T
TACAN — Tactical Air Navigation
TAS — True Airspeed
TE — Trailing Edge
TISEO — Target Identification System Electro—Optical

TMN — True Mach Number

U
UHF — Ultra High Frequency

V
VFR — Visual Flight Rules
VHF — Very High Frequency
VMC — Visual Meteorological Conditions
Vn — Velocity Acceleration Relationship
VORTAC — Very High Frequency — Omni Range and Tactical Air Navigation

W
WSO — Weapons System Officer
ALPHABETICAL INDEX

NOTE

All text and illustrations numbers in this alphabetical index refer to page numbers, illustration page numbers are shown in parenthesis.

<table>
<thead>
<tr>
<th>A</th>
<th>Anti-G Suit System</th>
<th>4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abort 3-6</td>
<td>Anti-Skid System</td>
<td>1-22</td>
</tr>
<tr>
<td>Acceleration Limitations 5-7, (5-10)</td>
<td>Armament 1-2</td>
<td></td>
</tr>
<tr>
<td>Accelerometers 1-32</td>
<td>Armor Plating 1-2</td>
<td></td>
</tr>
<tr>
<td>Aft CG Limits (6-9)</td>
<td>Arresting Hook Emergency Operation 3-46</td>
<td></td>
</tr>
<tr>
<td>After Electrical Power (Rear Cockpit) 2-14A</td>
<td>Arresting Hook Handle 1-23</td>
<td></td>
</tr>
<tr>
<td>After Landing 2-27</td>
<td>Arresting Hook System 1-23</td>
<td></td>
</tr>
<tr>
<td>After Takeoff - Climb 2-21</td>
<td>Arresting Hook Warning Lights 1-23</td>
<td></td>
</tr>
<tr>
<td>Afterburner Fails to Light 3-6</td>
<td>Attitude Director Indicator (ADI) (W/0 NWDS) 1-37</td>
<td></td>
</tr>
<tr>
<td>Afterburner Fuel System 1-6</td>
<td>Attitude Director Indicator (ADI) (With NWDS) 1-42A</td>
<td></td>
</tr>
<tr>
<td>Afterburner Ignition System 1-6</td>
<td>Attitude Indicator (Rear Cockpit) 1-34A</td>
<td></td>
</tr>
<tr>
<td>Afterburner Malfunctions After Light 3-6</td>
<td>Attitude Reference and Bombing Computer (AN/AJB-7) 4-9</td>
<td></td>
</tr>
<tr>
<td>Afterburner Malfunctions During Flight 3-11</td>
<td>Attitude Reference System 4-15</td>
<td></td>
</tr>
<tr>
<td>Aileron Rudder Interconnect (ARI) 1-18</td>
<td>Auto-Acceleration of Both Engines 3-46</td>
<td></td>
</tr>
<tr>
<td>Aileron-Spoiler Control System 1-16</td>
<td>Auto-Acceleration of One Engine 3-46</td>
<td></td>
</tr>
<tr>
<td>Air Conditioning and Pressurization System 4-1</td>
<td>Automatic Flight Control System (AN/ASA-32) 4-8</td>
<td></td>
</tr>
<tr>
<td>Air Data Computer (1-27)</td>
<td>Autopilot Pitch Trim 4-12</td>
<td></td>
</tr>
<tr>
<td>Air Data Computer System 1-26</td>
<td>Auxiliary Air Door Malfunction (Gear Down) 3-46</td>
<td></td>
</tr>
<tr>
<td>Air Refueling of Fuselage Tanks Only 3-24</td>
<td>Auxiliary Air Door Malfunction (Gear Up) 3-7</td>
<td></td>
</tr>
<tr>
<td>Air Refueling System 4-19</td>
<td>AC Electrical Power 1-13</td>
<td></td>
</tr>
<tr>
<td>Aircraft Fuel System 1-8</td>
<td>AC/DC Electrical Distribution (FO-9)</td>
<td></td>
</tr>
<tr>
<td>Airplane and Engine Fuel System (FO-5)</td>
<td>ADI and HSI Displays (1-39)</td>
<td></td>
</tr>
<tr>
<td>Airplane Loading (A1-5)</td>
<td>ADI/HSI (Attitude Director Indicator/Horizontal Situation Indicator) (1-36)</td>
<td></td>
</tr>
<tr>
<td>Airplane Speed Restrictions (5-5)</td>
<td>ADI/INS Failure 3-34</td>
<td></td>
</tr>
<tr>
<td>Airspeed Conversion A1-2</td>
<td>AFCS Controls 4-10</td>
<td></td>
</tr>
<tr>
<td>Airspeed Indicator Failure (3-49)</td>
<td>AFCS Mode 4-9</td>
<td></td>
</tr>
<tr>
<td>Airspeed Limitations 5-6</td>
<td>AIM-9 Airspeed Limitations (5-36)</td>
<td></td>
</tr>
<tr>
<td>Airspeed Position Error Correction A1-2</td>
<td>AIU Failure 3-36A</td>
<td></td>
</tr>
<tr>
<td>Airspeed/Mach Indicators 1-32</td>
<td>AOA Aural Tone System 1-23</td>
<td></td>
</tr>
<tr>
<td>Airstart 3-9</td>
<td>AOA Limitations 5-6</td>
<td></td>
</tr>
<tr>
<td>Airstart Envelope (3-10)</td>
<td>Change 10</td>
<td></td>
</tr>
<tr>
<td>Alt Encoder Out Light 1-26</td>
<td>Index 1</td>
<td></td>
</tr>
<tr>
<td>Alternate Fuel 5-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altimeter 1-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altimeter Position Error Correction A1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude Encoder Unit 1-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude Reporting Failure Indications (1-33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Of Attack Aural Tone Indications (1-25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Of Attack Displays (1-24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Of Attack Indexers 1-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Of Attack Indicators 1-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Of Attack (AOA) System 1-23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backup Navigation Capabilities (NWDS) (3-36D)
Bearing - Distance - Heading Indicator (BDHI) 1-43
Before Electrical Power (Rear Cockpit) 2-14
Before Entering Front Cockpit 2-4
Before Entering Rear Cockpit 2-13
Before Exterior Inspection (Front Cockpit) 2-1
Before Leaving Cockpit 2-28B
Before Starting Engines 2-9
Before Takeoff 2-17
Before Taxiing (Front Cockpit) 2-12
Before Taxiing (Rear Cockpit) 2-17
Bellows Failure 3-31
Bleed Air and Associated Systems (1-5)
Bleed Air Check Valve Failure 3-13
Bleed Air Duct Failure 3-13
Blown Tire During Landing Rollout 3-40
Blown Tire During Takeoff 3-6A
Bus Tire Open 3-29
BDHI (Bearing-Distance-Heading Indicator) (1-44)

C
Calibrated Airspeed A1-2
Canopies 1-57
Canopy Damage/Loss 3-36B
Canopy Emergency Systems 1-58
Canopy Knife 1-58
Canopy Malfunction 3-2
Canopy Unlocked Warning Light 1-58
Cartridge Mode Starting Malfunctions 3-3
Cartridge Start 2-29
Cartridge Start Malfunction Procedure 3-3
Center of Gravity Limitations- 5-6A
Circling Approach 9-2
Circuit Breakers (FO-31)
Climb 2-22
Climb Charts A3-1, (A3-3)
Cockpit Air Conditioning and Pressurization System (4-2A)
Cockpit Air Conditioning 4-1
Cockpit Entry (2-2)
Cockpit Overpressurization 3-2
Cockpit Pressure Schedule (4-6)
Cockpit Pressurization 4-4
Cockpit Temperature Schedule (4-3)
Cold Weather Procedures 9-2
Combat Ceiling Charts A3-2, (A3-14)
Combat Fuel Flow Charts A9-1, (A9-8)
Combat Specific Range A9-1, (A9-11)
Combined Altitude Radar
Altimeter (CARA) 1-34, (1-34B)

Index 2 Change 10

Command Selector Valve (1-64)
Communication-Navigation-Identification Equipment (1-45)
Communication, Navigation, Identification (CNI) System 1-45
Compressor Stall 3-12A
Computer Steer Mode 4-9
Constant Altitude Cruise A4-3, (A4-27)
Constant Mach/Altitude Cruise A4-2, (A4-20)
Control Amplifier 4-9
Control Sticks 1-16A, (1-17)
Controllability Check 3-36C
Counter Air Mission Profile A10-1
Course and Distance Computer 4-17
Course Indicator 1-54
Course Select Panel 1-43
Crew Requirements 5-1
Crewmember in Command of Aircraft 8-1
Crewmember in Control of Aircraft 8-1
Crewmember Not In Control of Aircraft 8-1
Crosswind Landing (Dry Runway) 2-26
Crosswind Landing Guide (2-26)
Crosswind Takeoff 2-21
Cruise Summary A4-1, (A4-6)
Cruise 2-22
Cruise/Combat Configuration 6-9
CG Travel Due to Fuel Consumption 6-5, (6-3)
CDU Failure 3-36B
CNI Equipment Limitations 5-9

D
Danger Areas (2-10)
Density Ratio Chart A2-1, (A2-6)
Departures 6-11
Descent A7-1, (A7-2)
Descent/Before Landing 2-23
Dimensions 1-1
Directional Control After Landing with Utility Hydraulics 3-41
Ditching Chart (3-48)
Dive Recovery 6-7
Dive Recovery Charts A9-5, (A9-59)
Double Engine Failure During Flight 3-11
Double Exhaust Nozzle Failure 3-13
Double Generator Failure 3-26
Double Power Control System Failure 3-34
Drag Chute Handle 1-23
Drag Chute System 1-23
Drag Due to Asymmetric Loading A1-2
Drag Index System A1-1
DC Bus Light On 3-29
DC Electrical Power 1-13
DMAS Failure (PC PSW On DDI) 3-34
DMAS Inflight Alignment 3-34
DMAS Navigation Computer Failure 3-34
DMAS Pre-Scramble Alignment 2-32A

E

Eject Light 1-30A
Ejection 3-13
Ejection Altitude vs Sink Rate (3-19)
Ejection Procedures (3-15)
Ejection Seat 1-62
Ejection Seat and Canopy Initiator Safety Pins (2-5)
Ejection Seat Descent Time (3-21)
Ejection Seat Failure 3-21
Ejection Seat Sequencing 1-65
Ejection Seats (FO-17)
Electrical Fire 3-22
Electrical Power Supply System 1-13
Electrical System (FO-7)
Electrical System Controls and Indicators 1-14
Electrical Test Receptacle Plug 3P325
Location (1-13)
Emergency Attitude Indicator 1-34A
Emergency Attitude Indicator (SAI) Inverter 1-34A
Emergency Attitude Reference System 1-34A
Emergency Entrance and Exit 3-4
Emergency Entrance/Exit (3-5)
Emergency Equipment 1-26
Emergency Evacuation 3-4
Emergency Fuel 5-6
Emergency Hydraulic Brake System 1-22
Emergency Landing Pattern 3-37
Emergency Power Distribution (3-27)
Emergency Vent Knob 4-5
Engine Air Induction System 1-3
Engine Airspeed Limits (5-5)
Engine Anti-Icing System 1-6
Engine Bleed Air System 1-4
Engine Controls and Indicators 1-6
Engine Exhaust Temperature Limitations 5-1
Engine Failure/Malfunction During Flight 3-9
Engine Failure on Final 3-38
Engine Fire and Overheat Detector System 1-29
Engine Fire or Overheat During Flight 3-11
Engine Fire or Overheat During Ground Operation 3-3
Engine Fire/Overheat on Final 3-38
Engine Fire/Overheat or Failure During Takeoff 3-6
Engine Fuel System 1-2
Engine G Limitations 5-4
Engine Ground Operation 2-12
Engine Ignition System 1-4
Engine Limitations 5-1
Engine Oil System 1-2, (1-3)

Engine Operating Characteristics 7-1
Engine Operating Envelope 7-1, (7-2)
Engine Shutdown 2-23B
Engine Starter Operation 7-2
Engine Starting System 1-4
Engines 1-2
Equipment Air Conditioning System 4-5
Equipment Auxiliary Air System 4-6
Equipment Cooling Turbine Failure 3-23
Equivalent Airspeed A1-2
Exterior Inspection 2-3
Exterior Lighting 1-58
External Canopy Manual Lock/Unlock Handles 1-57
External Electrical Power 1-13
External Fuel Pumps to Transfer 3-25
External Stores Limitations 5-8, (5-13)
Extreme Cockpit Temperatures 3-23

F

Field Arrestment Gear Data (3-50)
Flap Failure 3-39
Flight Control Malfunction 3-30
Flight Controls 1-16, (FO-15)
Flight Director Group 1-35
Flight Planning 2-1
Flight Strength Diagram 5-8, (5-11)
Flight With Asymmetric Loading 6-8
Flight With Asymmetric Slats 6-8A
Front Cockpit (FO-21)
Front Cockpit Interior Check 2-6
Fuel Boost Pumps Inoperative 3-24
Fuel Boost System 1-9
Fuel Distribution and Indication (1-11)
Fuel Quantity Data Table (1-10)
Fuel Quantity Indicating System 1-12
Fuel Siphoning During Takeoff/Climb 3-8
Fuel Transfer Failures 3-24A
Fuel Transfer Pump Malfunction 3-25
Fuel Weight Variations 7-2
Fuselage Fuel Leak 3-25

G

General Arrangement (FO-3)
Glide Distance 3-13
Go-Around 2-27, (2-28)
Gross Weight 1-1
Gross Weight Limitations 5-6
Ground Speed Indicator 1-32
Gyro Compass Alignment 2-31
H

Handling Qualities 6-7
Hangfire/Hangstart 3-3
Hard-Over Rudder Inflight 3-30A
Have Quick II Operations 2-32
Have Quick II System 1-50A
Have Quick Operations 2-32
Have Quick System 1-50
Heading Memory Alignment 2-32
Heavy Gross Weight Landing 2-27
High Altitude Cruise Tables A4-2, (A4-14)
High Altitude Ejection 3-14
High Angle Of Attack Maneuvering 6-6
High Mach Flight Power Reduction
Limitations 5-4
Holding/Loiter 9-1
Horizontal Situation Indicator 1-36B
Hot Refueling 2-32A
Hot Weather Procedures 9-6
Hydraulic Power Supply System 1-14
Hydraulic Pressure Indicators 1-15
Hydraulic System (FO-11)
Hydraulic Systems Indicator Lights 1-15

I

Ice and Rain 9-7
Identification System Control Panel (1-55)
Identification System (IFF) 1-55
Ignition Limitations 5-4
Indicated Airspeed A1-2
Inertial Navigation and Attitude-Heading
Reference System 4-14
Inertial Navigation Set 4-14
Instrument Approach 9-1, (9-4)
Instrument Climb (Max Thrust) 9-1
Instrument Climb (Mil Thrust) 9-1
Instrument Descent 9-1
Instrument Flight Procedures 9-1
Instrument Fluctuation 5-1
Instrument Markings 5-1, (5-2)
Instrument Takeoff 9-1
Instruments 1-32
Intercom System 1-45
Interior Lighting (Front Cockpit) 1-59
Interior Lighting (Rear Cockpit) 1-60
Internal Canopy Manual Unlock Handles 1-57
Internal Wing Fuel Dump System 1-12B
Internal Wing Fuel Fails to Transfer 3-24A
Inverted Spins 3-8A
IFF Controls and Indicators 1-55
IFF Emergency Operation 1-57
INS Alignment 2-31
INS Inflight Alignment 3-34
INU Inflight Alignment 3-36B
Index 4 Change 10

J

Jet Penetration (9-3)
Jettison Chart (3-35)
Jettison Controls (1-30)
Jettison Systems 1-30A
Jettisoning 3-34

K

KY-28 Modes of Operation 4-7
KY-28 Normal Operation 4-7
KY-28 Operation or KY-58 Operation with
KY-28 Control Panel 2-32
KY-58 Operation 2-32

L

Landing 2-24
Landing From the Rear Cockpit with Pilot
Disabled 3-40
Landing Gear Control Handle 1-21
Landing Gear Emergency Lowering 3-43
Landing Gear Emergency Retraction 3-43
Landing Gear Fails to Extend 3-42A
Landing Gear Fails to Retract 3-7
Landing Gear Malfunctions 3-42
Landing Gear Malfunctions-Emergency
Landings (3-44)
Landing Gear Malfunctions 3-42A
Landing Gear System 1-21
Landing Pattern (2-25)
Landing Technique 2-24
Landing With a Blown Tire 3-39
Landing With Anti-Skid Failure 3-40
Landing With Both Engines Inoperative 3-39
Landing With Double Exhaust Nozzle
Failure 3-39
Landing With Hard-Over Rudder 3-42
Landing With One Utility Hydraulic Pump
Failed 3-41
Landing With Ramp Failure 3-39
Landing With Utility Hydraulic System
Failure 3-41
Left Generator Out - Bus Tie Open 3-29
Leg Restraint 1-65
Level Flight Envelope A9-4, (A9-54)
Loading Equipment 1-58
Longitudinal Stability 6-1
Low Altitude Accelerations A9-3, (A9-17)
Low Altitude Cruise Tables A4-2, (A4-9)
Low Altitude Ejection 3-14
Low Angle Of Attack Maneuvering 6-6
M

Magnetic Compass 1-33
Maneuvering Slats 1-18
Maximum Abort Speed Charts A2-3, (A2-9)
Maximum Endurance Charts A5-1, (A5-3)
Maximum Performance Maneuvering 6-7
Mechanical Malfunction 3-9
Medium Angle Of Attack Maneuvering 6-6
Midfield/Departure-End Arrestment 3-47
Military Power Operating Limits (5-4)
Minimum Ejection Altitude vs Airspeed, Dive Angle and Bank Angle (3-20)
Minimum Go Speed Chart A2-2
Minimum Landing Roll Distance Chart A8-1, (A8-4)
Minimum Run/Heavy Gross Weight Takeoff 2-21
Miscellaneous Equipment 4-21
Misfire 3-3
Missed Approach Procedures 9-2

N

Navigation Computer Control Panel 4-17
Navigation Computer Displays (1-41)
Navigation Computer Operation 4-13
Navigation Computer Set (AN/ASN-46A) 4-17
Navigation Function Selector Panel 1-36A, (1-36B)
Navigation and Weapon Delivery System (AN/ASQ-203) 4-19
Net Entry 1-50A
Night Flying 9-2
No-Flap Takeoff 2-20
No-Slats Flaps Landing 3-37
Normal Operation of VOR/ILS System 1-54
Normal Takeoff 2-20
Nose Gear Steering 1-21
NWDS Failures (ACU, AIU, CDU, or INU) 3-36A
NWDS Pre-Scramble Alignment 2-33
NWDS System Advisory Messages 3-36B, (3-36F)

O

Oil Pressure 5-1
Oil System Failure 3-24
Operations on Bomb-Damaged Runways 2-34
Out-Of-Control Recovery 3-8, (6-13)
Oxygen Duration Chart (1-61)
Oxygen Quantity Gage 1-61
Oxygen Regulators 1-60
Oxygen Supply 1-61, (1-63)
Oxygen System 1-60

P

Pitch Control at Low Speeds 6-6
Pitot Heat Switch 1-26
Pitot-Static System 1-26
Pneumatic Pressure Indicator 1-16
Pneumatic Start 2-9
Pneumatic System 1-16, (FO-13)
Power Control Systems 1-14
Preflight Check 2-1
Preparation for Flight 2-1
Present Position Computer 4-17
Primary Fuel 5-4
Prohibited Maneuvers 5-6

R

Radar Altimeter Before TO IF-4-1252 1-33
Radar CNI Cool Off Light 3-23
Ramp Failure 3-12
Ramps Cycling 3-12A
Ramps Fully Extended Below 1.5 Mach 3-12
Ramps Fully Retracted Above 1.5 Mach 3-12
Rangewind Correction A4-1, (A4-5)
Rear Cockpit (FO-27)
Rear Cockpit Interior Check 2-15
Rear View Mirrors 4-21
Recovery Characteristics and Techniques 6-11
Reference System Selector Switch 4-16
Reverse Fuel Transfer 3-25
Rig Check 2-23
Right Generator Out - Bus Tie Open 3-29
Rudder Control System 1-16A
Runaway Stabilator Trim 3-30B
Runway Departure 3-4

S

Scramble 2-33
Seat Ejection Procedures 3-14
Selective Jettison 1-30A
Selective Slats Flaps 1-18
Self-Sealing Cells 1-8
Servicing 1-66
Servicing Diagram (1-67)
Short Field Landing 2-26
Single Engine Flight Characteristics 6-8
Single Engine Go-Around 3-38
Single Engine Taxi 2-32A
Single Generator Failure 3-26
Single Power Control System Failure 3-32
Single-Engine Flight Characteristics 3-9
Single-Engine Landing 3-38
Slats Flaps Emergency Lowering 3-37
Slats Flaps Operation (1-19)

Change 10 Index 5
TO 1F-4E-1

Slats Flaps System 1-18
Smoke and Fumes 3-22
Solo Flight Inspection (Rear Cockpit) 2-29
Spare Lamps 4-21
Speech Security Unit (KY-28) 4-6
Speed Brake Emergency Operation 3-31
Speed Brakes 1-20
Spin Recovery (6-15)
Spins 6-11
Split-Flap/Deflected Rudder 3-38
Stab Aug/Slat Check 2-23
Stabilator Auxiliary Power Unit (APU) 1-15
Stabilator Control System 1-16
Stability and Control 6-1
Stability Augmentation 1-18, 4-8A
Stability Effects (6-2)
Stability Index System A1-1
Stall Characteristics (6-10)
Stall Warning Vibrator 1-26
Stalls 6-8A
Starter Cartridges 7-2
Starter Limitations 5-1
Starting Engines 2-9
Static Pressure Compensator (SPC) 1-26
Supersonic Maximum Thrust Climb
Charts A9-2, (A9-14)
Survival Kit (1-66)
Survival Kit Deployment 3-22
Sustained G Turn Capabilities A9-7, (A9-65)
Systems Operation Limitations (5-7)

T

Tact (Tactical Air Navigation) System 1-51
Tact Control Panel (1-52)
Tact Controls 1-52
Takeoff 2-20, (2-21)
Takeoff and Landing Data Card 2-1
Takeoff Distance Charts A-2-3, (A2-11)
Takeoff Emergencies 3-6
Taxing 2-17
Temperature Effect on Maximum
Speed A9-5, (A9-63)
Throttles 1-7, (1-7)
Thrust Limitations 5-4
Time Release Mechanism Failure (Activation)
Inflight 3-21
Time-Of-Day (TOD) Entry 1-50A
Touch-And-Go 2-27
Touchdown Limitations 5-6
Touchdown Sink Rate Limits (5-8)
Transfer System 1-8

True Airspeed A1-2
True Airspeed Indicators 1-32
Turbulence and Thunderstorms 9-6
Turn and Slip Indicators 1-34
Turn Capabilities A9-6, (A9-64)
Turning Radius and Ground Clearance (2-18)
T2 Cutback 7-1
T2 Reset 7-1
T5 Reset 7-1

U

Upright Spins 3-8
Utility Hydraulic and Engine Failure 3-33
Utility Hydraulic and Single PC Failure 3-32
Utility Hydraulic System Failure 3-31
Utility System 1-15
UHF Radio After TO 1F-4-1233 1-49, (1-47)
UHF Radio Before TO 1F-4-1233 1-46, (1-47)

V

V-N Envelope A9-4, (A9-55)
Variable Area Exhaust Nozzle 1-6
Velocity During Takeoff Ground Run and Cg
Correction Charts A2-4, (A2-13)
Vertical Velocity Indicators 1-33
Voice Warning System 1-30B
VOR/ILS Control Panel 1-54
VOR/ILS Controls and Indicators 1-54
VOR/ILS System 1-53

W

Warning and Indicator Lights 1-26
Warning/Indicator Lights (3-51)
Weight and Balance 2-1
Wet or Icy Runway Landing 2-26
Wheel Brake Failure 3-3
Wheel Brake System 1-22
Wind Components Chart A1-4, (A1-20)
Windmilling Limitations 5-4
Windshield Defogging 4-4
Windshield Defogging Procedure 4-5
Wing Fold 1-21
Word-Of-Day (WOD) Entry 1-50A

Z

Zoom Climb 6-14

Index 6 Change 10